SRI International

In Situ Membrane Introduction Mass Spectrometry for Subsea Characterization of Light Hydrocarbons

R. Timothy Short, Strawn K. Toler, Ryan J. Bell, Andres M. Cardenas-Valencia, Jwalant Dholakia, and Steve Untiedt

9th Workshop on Harsh Environment Mass Spectrometry

St. Pete Beach, FL 18 September 2013

Outline

- Need for in-water chemical measurements of light hydrocarbons
- · Membrane introduction mass spectrometry (MIMS)
- Underwater MIMS systems
- Detection of light hydrocarbons
- · Examples of underwater MIMS deployments
- 2D mapping in Santa Barbara Channel
- Towed deployment with inverse modeling
 Pumped surface water analysis
- Deep water real-time hydrocarbon "sniffing"
- See floor detection of methane at MC118
- Osaka University Robot tests in Suruga Bay
- Autonomous vehicle tests in Tampa Bay
- Summary

In-Water Chemical Surveys and Inspections

- Establish background levels of hazardous compounds
- Underwater surveys on manned or unmanned vehicles near drilling platforms and pipelines
- Characterize natural hydrocarbon seep

 Autonomous underwater vehicle (AUV) or remotely operated vehicle (ROV) surveys
- Detect elevated concentrations of leaking chemicals
 - Time series monitoring
 - Periodic surveys (AUV, ROV, or Towed)
- Inspect suspected leaks – ROV survey of location
- Real-time feedback to find source

Membrane Introduction Mass Spectromery is Ideal

- MIMS can monitor multiple analytes simultaneously
- Introduction of analytes from the water column
- Passive (except for sample pumping and heating, if desired)
- Polydimethylsiloxane (PDMS) and Teflon are most common choices (hydrophobic)
- Provides sensitive detection of dissolved gases and volatile organic compounds
- Need to mechanically support membrane (hydrostatic pressure)
- Porous metal or ceramic frit

rypical	Minito Diagri	0310 10113	
	M/Z VALUE	COMPOUND	ISOTOPIC FORM
	15	Methane (CH ₄)	¹² CH ₃ Fragment
	28	Nitrogen (N ₂)	¹⁴ N ¹⁴ N
	30	Ethane (C ₂ H ₆)	Various
	32	Oxygen (O ₂)	¹⁶ O ¹⁶ O
	34	Oxygen (O ₂) Hydrogen Sulfide (H ₂ S)	¹⁶ O ¹⁸ O H ₂ ³² S
	39	Propane (C ₃ H ₈)	Various
	40	Argon (Ar)	⁴⁰ Ar
	44	Carbon Dioxide (CO ₂)	¹² C ¹⁶ O ¹⁶ O
	58	Butane (C ₄ H ₁₀)	Various
	78	Benzene (C ₆ H ₆)	Various
	92	Toluene (C ₇ H ₈)	Various
	106	Xylene (C ₈ H ₁₀)	Various
	128	Naphthalene (C ₁₀ H ₈)	Various
 Full mas 	s scans or selected	d ion monitoring	

• A total of 40 m/z values can be monitored with a cycle time of ~7 seconds

3

<text><list-item><list-item><list-item><table-container> New SB Channel Data – Trilogy Seep (Nov. 2012) Image: String of the string

Tent Seep MIMS Light Hydrocarbon Data

- Crossed through Tent Seep and then "criss-crossed" downstream of seep
- Used MIMS signal to reverse boat direction
- Detected methane, ethane, propane, butane and pentane

Natural Hydrocarbon Seep Characterization (2011)

- ROV surveys of hydrocarbon seeps with MIMS in the Gulf of Mexico to depths >1900 m
 MIMS mounted on a Schilling ROV along with
- acoustic instrumentation, HD video camera, and other instruments (CTD and dissolved oxygen (DO) sensor)
- Communication with instrument through an Ethernet link using ROV optical fiber system

HD Camera HD Camera HD S and Battery Vessel MMS Sample MMS data synchronized with ROV navigation system to create 2-D and 3-D maps of methane and other light hydrocarbon concentrations near seeps

Lander Deployment at MC118 with SRI MIMS (July 2013) *R/V* Pelican cruise with Gulf of

- Mexico Hydrates Research Consortium to characterize gas chemistry and biological communities near hydrocarbon seeps at MC118
- Integrated MIMS with University of Georgia (UGA) Lander, HD video, 30-filter microbe collection system, CTD and DO sensors
- Detected methane near the sea floor at 880 m depth
- Real-time HD video of sea floor for seep visualization

Geo-referenced MIMS Methane Data at MC118

- Lander drifted past suspected seep several times (HD video showed bubbles on previous dive)
- An ultra-short baseline (USBL) navigation system recorded 3D position of the Lander
- HD video did not show bubbles during this dive
- Both methane and ethane were detected at two locations
- MIMS data will be plotted on georeferenced bathymetric map to show location of seeps

Osaka University Robot Deployment (March 2013)

- Osaka University underwater robot for autonomous tracking and monitoring of spilled plumes of oil and gas (SOTAB-1) *Prof. Naomi Kato*
- Multi-sensor system (MIMS, CTD, DO, fluorometer, camera) with realtime acoustic communication
- MIMS data will be used to guide robot to track plumes of hydrocarbons
- First at sea-trials in Suruga Bay had multiple communication problems
- Next deployment in Gulf of Mexico in December 2013 near MC252

Robot Deployment in Suruga Bay, Japan

AUV Deployment of MIMS in Tampa Bay (Aug. 2013)

- Integrated UMS, CT sensor with SRI Bluefin BF-12 AUV to demonstrate performance of AUV with UMS and new equipment in Tampa Bay
- Successful deployment of UMS for "lawn mower" pattern survey
- Next deployment plan is to add a fast optical sensor and deploy along with an artificial plume generator with fluorescence dye and helium gas as proxies for components of a natural seep

AUV Deployment with UMS in Tampa BayImage: State of the state o

- Two surveys with AUV (different depths)
- BlueView multibeam MB1350 detected bubble stream and MIMS detected helium and methane

Summary

- In-water chemical measurements are needed and can be used to detect and characterize subsea hydrocarbon leaks and seeps
- Underwater MIMS systems can fill this need by providing concentration information for methane, ethane, propane, butane, and pentane (in near real-time for some platforms)
- · Applications are diverse
 - Establish background levels of light hydrocarbons
 - High-resolution 2D and 3D maps of dissolved gas and light hydrocarbon concentrations near seeps and potential leak areas
 - AUV deployments for wide area surveys
 - ROV deployments for inspection and characterization of leaks and seeps
 - Time series monitoring (detect leaks or monitor ecosystem health)
- · MIMS data can be used to guide survey patterns

Acknowledgements

- Staff at SRI International: Michelle Cardenas, David Walker, Tom Almeida, Charles Cullins, John Kloske, Mark Ryder
- Keith VanGraafeiland (CSA International)
- · Eric Roach (EGS Americas)
- Ira Leifer (Bubbleology Research International)
- Funding received from CSA International (Job 2400 PO 8172)
- Funding received from Osaka University (ERC 12-021 Rev 5)
- R/V Pelican ship time provided by the Gulf of Mexico Hydrates Research Consortium (University of Mississippi)

