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Introduction
Isotopes in nature

> Isotope abundances are fingerprints of the processes in which isotopes 
were produced or their ratio modified
— Isotope compositions of some elements: stellar-thermometers/stellar dosimeters 

(highlighting the birth of the elements)
— Short lived radioactive isotopes: illuminators of clouds of SN ejecta
— Long lived radioactive isotopes: clocks for the time scale of nucleosynthesis

> Variations in stable isotope abundances are due to radioactive decay, 
nuclear reactions and fractionation
— Constrain the time of events (radio-isotope chronology)
— Fractionation: variations of isotope composition help to understand the 

underlying chemical and physical processes

> Isotope abundance ratios are much less disturbed than element 
abundances and are robust tracers of early events that set their 
values 
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Introduction
Isotopes with relevance to space research

> Radioactive decay: “dating”
— radio-isotope chronology methods are considered currently for in situ planetary 

surfaces application (Rb-Sr, K-Ar; Pb-Pb, U-Pb)

> Isotope fractionation: interstellar and planetary processes
— D/H:  presolar conditions 
— 14,15N, 16,17,18O: heterogeneity 
— 12,13C, 32,33,34S: bio-relevant

> Mass spectrometers are required
— High accuracy and precision
— High sensitivity
— Sufficient high mass resolution
— Sufficiently high spatial resolution (mineralogical context)
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Introduction
Current projects for in situ isotope measurements in planetary solids

> KArLE: geochronology by K-Ar dating method
(Cohen, in 43th Lunar Planet. Sci. Conf., 2012, #1267)

> LDRIMS: geochronology by Rb-Sr dating method
(Anderson et al., IEEE, 2013)

> LAMS: element and isotope measurements
(Brinckerhoff et al., Rev. Sci. Instrum., 2000)

> LAZMA: element and isotope measurements
(Managadze et. al., Sol. Sys. Res., 2010)

> LMS: elements and isotopes
(Rohner et al., Meas. Tech., 2003; A. Riedo et al., J. Mass 
Spectrom., 2013, 48, 1-15, Riedo et al., J. Anal. At. Spectrom., 
2013, 28, 1256)
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− Dating (Pb-Pb, 
U-Pb)

− Fractionations
− Trace elements
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Introduction
Capabilities of in situ measurements in space research using LMS

> In-situ measurements

— Complete elemental and isotopic composition 
measurements (ablation mode)
– Normative mineralogy (e.g., single grain 

mineralogy)
– Chemical maps of heterogeneous material 

surface (e.g., composition of bulk vs. individual 
surface components) (Neuland et al., Planet. Space 
Sci., 2013, accepted)

– Depth profiling analysis (e.g., weathered surface 
vs. interior composition)

– Element and isotope fractionations
– Radio-isotope chronology of planetary solids

(e.g. Riedo et al., J. Anal. At. Spectrom., 2013, 28, 
1256, Riedo et al., Planet. Space Sci., 2013, in press)

— Molecular composition (desorption mode)
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Introduction
LIMS for in-situ measurements

> Advances in last decades (modeling tools, fast electronics and data 
acquisition, miniaturized laser system)

> Miniaturized laser-ablation mass spectrometer (LA-MS)
- tens of ppb detection sensitivity
- measurements on isotopes with high accuracy
- relative sensitivity coefficients close to one
- sample consumption in the ~ fg/ng range
- no sample preparation, no oven, no chemical agents
- straightforward data acquisition and analysis

> Current space instruments 
- LAZMA (Phobos-Grunt sample return mission, Luna Glob and Luna Resurs 2014-2016)
- LMS on CAMAM assembly
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Sample 
Illumination

MCS

LMS

Total mass: ~4kg
Total power: ~11W

CAMAM

Miniaturised LIMS (LMS)
Instrumental Overview
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(Riedo et al., J. Anal. At. Spectrom., 2013, 28, 1256; A. Riedo et al., J. Mass Spectrom., 2013, 48, 1-15)

Miniaturised LIMS (LMS)
Operation Principle & Design
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- 160mm x 60mm

- Flight model ~ 1.5kg
Power consumption: ~4W

- Voltages:
Ion optics/Detector: ~2 kV

- Design based on Simion-
simulations

- Ring-anode detector

- 2 x 8-bit high speed 
digitizer with on-board 
processing ADC cards, 
each with 2 channels 
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Laser ablation / ionisation source
Reflectron-type TOF analyser

R-TOF characteristics
> Mass calibration: m(t) = k0(t-t0)2

> Mass calibration accuracy: ∆m/m ~10-4

> Spectra collected within ~13 s

> Mass resolution: 500-1000

> Dynamic range: 106/channel and > 108

by combined detection with various 
rings (channels at different gains)

> Metallic and non-metallic elements 
down to 10ppb can be detected
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ns-laser
Nd:YAG, =266nm
Pulse duration: 3ns
Rep. rate: 20Hz
< ~1GW/cm2

Ion source: laser

Ø20m

fs-laser: =775nm; pulse length: 190fs;
Rep. rate: 1kHz – 1Hz

(Riedo et al., J. Anal. At. Spectrom., 2013, 28, 1256; 
Riedo et al., J. Mass Spectrom., 2013, 48, 1-15)

Temporal control

• Individual spectra analysis

• Cumulative analysis / relative

• Mass resolution (m/∆m)

• SNR

• etc.

Quantitative elemental analysis
(temporal control)
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(Riedo et al., J. Anal. At. Spectrom., 2013, 28, 1256)

Quantitative elemental analysis
(ns-laser vs fs-laser)
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NIST vs. LMS measurements
ns-laser:

RSC in the range ~ 10-4 - 10
e.g. C(2·10-4), Si(2·10-2), P(2.5·10-2), 
S(4.5·10-2), Ti(2)
N = 60’000 waveforms accumulated
I ~0.5 GW/cm2

Accuracy: <10%

NIST vs. LMS measurements
fs-laser (current studies):

RSC close to one
→ C(0.90), Si(1.04), P(1.10), S(1.16), 

Ti(0.92)
N = 100’000 waveforms accumulated
I ~ 2230 GW/cm2

Isotope measurements and accuracy (ns)
Case study Pb

> NIST SRM 981 (standard lead sample)
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Mass [amu] Isotopic Abundance [%] Accuracy [%]

204 1.4352 ± 0.0033 0.68

206 24.1092 ± 0.0308 0.15

207 22.0959 ± 0.0289 0.06

208 52.3597 ± 0.0743 0.02

Mass [amu] Isotopic Abundance [%]

204 1.4255 ± 0.0012

206 24.1442 ± 0.0057

207 22.0833 ± 0.0027

208 52.347 ± 0.0086

Investigations on:

- Number of accumulated waveforms 
(crater depths, mass resolution)

- Analysis method (fit models or direct 
integration)

- Laser fluence dependency

(Riedo et al., Planet. Space Sci., 2013, in press) 

abs(Ref. – Meas.)/Ref.
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Isotope measurements and accuracy (ns)
LMS accuracy referenced to TIMS data

> Galena samples from different mines!
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Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

204 1.3768 ± 0.006 0.24

206 24.965 ± 0.011 0.43

207 21.568 ± 0.010 0.19

208 52.090 ± 0.027 0.12

Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

204 1.4946± 0.0006 0.52

206 23.1899 ± 0.0075 0.66

207 22.9223 ± 0.0086 0.53

208 52.393 ± 0.018 0.22
Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

204 1.4154 ± 0.0005 0.13

206 24.4297 ± 0.0086 0.20

207 22.2584 ± 0.0093 0.18

208 51.897 ± 0.0620 0.02

Kengere, Katagne, Belgian 
Congo Dilia Mine, Kilo Moto, 

Belgian Congo

Ambatofangehana, 
District Ambositra, 
Madagascar

(Riedo et al., Planet. Space Sci., 2013, in press)

> Estimated accuracy for isotope 
concentration  of 100 ppm: ~10 ‰

Accuracy and precision of isotope ratio 
measurements vs. concentration (ns)
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(Riedo et al., Planet. Space Sci., 2013, in press)

Isotope measurements and accuracy (fs)

> NIST SRM 661/664/665 samples (terrestrial isotopic ratios assumed)
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Accuracy and precision of isotope ratio 
measurements vs. concentration

> ns- laser ablation ion source
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(Riedo et al., Planet. Space Sci., 2013, in press)

> fs-laser ablation ion source

(Riedo et al., J. Anal. At. Spectrom., 2013, 28, 1256)
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Pb-Pb radio-isotope chronology (ns)

> 207Pb/206Pb in monazite grains (Willigers et al., Geochim. Cosmochim. Acta, 66, 
1051—1066, 2002)

→ accuracy of ± 25 millions 
of years

> Lunar KREEP/ zircon grains: 
high abundant in Pb
(Nemchin et al., 2008)
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(Riedo et al., Planet. Space Sci., 2013, in press)

Summary
Performance overview
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> Isotope composition studies were performed for standard materials and natural 
samples
— fs-laser ion source is preferred over ns-laser ion source  

– nearly stoichiometric ion production for all elements
– Increase sensitivity for nonmetallic elements

— Accuracy and precision of the measurements increase linearly with an increase 
of isotope concentrations; for  isotope concentrations >100 ppm the accuracy lies
in ‰ and sub-‰ range.

— Pb isotope analysis shows that the age determination by the Pb-Pb chronology  
can be made with accuracies ±25 My; these analyses are currently underway. 

— High sensitivity in detection of elements supports isotope analysis; all light 
elements and their isotope including H/D, Li, B, C, N, O, Mg, Al, Si, P, S can be 
well studied by means of light isotope ratio fractionation. 

Outlook 

> fs-laser studies (parametric studies, e.g. wave length, pulse width, 
etc.)

> Design of a miniature fs-system for space research (fiber laser 
system)

> Analysis of high spatial resolution studies are currently undertaken 
(Ø3.5 μm, spatial resolution 30 μm)
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Outlook – 2d chemical finger printing
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> Area of 1.5 x 1.5 mm2 → 2’500 measured posi ons
> 60 k laser shots on one single surface position
> ~50h on time
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Thank you for your attention!
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- Performance optimizer is 
based on a adaptive 
particle swarm algorithm 
(APSA)

- Minimization of fitness 
function defined by user, 
e.g., -A/FWHM

- LMS: mass resolution, ion 
transmission, sample 
position, laser fluence

(A. Riedo et al., J. Mass 
Spectrom., 2013; A. Bieler et al., 
J. Mass Spectrom., 2011; T. Beck 
al., App. Therm. Eng., 2012)

- Mass resolution had increased from m/∆m = 
122 to 743, factor of ~ 4.5!

- Intensity decreased ~ 30%

Computer-controlled performance 
optimiser (voltage settings on ion optics, sample positioning 
(crater diameter), laser fluence)

Isotope measurements and accuracy (ns)

> Galena samples (Kengere, Katagne, Belgian Congo; Dilia Mine, Kilo Moto, Belgian 
Congo; Ambatofangehana, District Ambositra, Madagascar)

Reference: TIMS measurements

> Allende: homogenized sample (few examples!)

Reference: I.N. Tolstikhin and J.D. Kramers, 2008; H.Y. McSween and G.R. Huss, 2010.
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Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

204 1.3763 ± 0.0019 0.36

206 24.969 ± 0.035 0.40

207 21.571 ± 0.030 0.19

208 52.083 ± 0.076 0.10

Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

204 1.4947 ± 0.0019 0.40

206 23.192 ± 0.023 0.11

207 22.921 ± 0.025 0.52

208 52.392 ± 0.059 0.19

Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

204 1.4154 ± 0.0018 0.01

206 24.435 ± 0.031 0.23

207 22.257 ± 0.031 0.16

208 51.892 ± 0.064 0.04

Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

24Mg 79.15 ± 0.12 0.2

25Mg 9.91 ± 0.02 0.9

26Mg 10.94 ± 0.02 0.6

Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

52Cr 83.73 ± 0.31 0.1

23Cr 9.56 ± 0.24 0.6

Mass
[amu]

Isotopic Abundance
[%]

Accuracy [%]

32S 94.92 ± 0.82 0.1

34S 4.32 ± 0.50 1.6

A. Riedo et al., PSS, 2012, sent. 

Mass spectrometric results
Dynamic Range & Sensitivity

> Spectra are acquired from three of four 
anode rings: LG, MG, and HG (low, 
medium and high gain signals)

> Dedicated measurement procedure yields 
dynamic range ≥108 by combining various 
channels; the most intense mass peaks 
are saturated in MG, HG spectra

> The sensitivity of measurements is high
non-metallic elements (B, C, S, Si) can
be detected down to ~ hundredths of ppb
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A. Riedo et al., J. Mass Spectrom., 2012, submitted.
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> Standard samples to calibrate the system
(Semi-quantitativ analysis possible without standards at very high fluences)

> RSC (relative sensitivity coefficients) factors for unknown 
samples, e.g., lunar samples, meteorites, etc.

> High dependency on laser 
fluence (< ~GW/cm2), 
sample form (powder, solids),
wavelength

Measurement Results (LMS)
Elemental Measurements
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abundancequoted

abundancemeasured
RSC 

LMS
Instrumental Overview
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Laser ablation mode

- Laser irradiance: ~ 0.1–8 GW/cm2

(hot plasma conditions)

- Singly charged elements dominate

- Abundances measured should be 
similar to specified

(Tulej et al., ABC, 2011)

Laser desorption mode

- Laser irradiance: ~ < 100 MW/cm2

- Large molecules can be desorbed 
from the surface at reduced 
fragmentation effects

(Riedo et. al., J. Appl. Physics, 2010)

Outlook
Depth profiling
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Depth profiling

Peter Brockmann (Chem. Dep.)

Mass Resolution (ns)
Laser irradiance dependency

> A mass resolution m/∆m in the range of 500 to 900 is 
possible (at Pb).
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LA-MS for Rover for BepicColombo
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Introduction
Extraterrestrial material and in-situ measurements

> Extraterrestrial material:
- major/minor and trace elements -> origin and evolution solar system

- bio-relevant trace elements (C, S, P, …) -> astrobiology
- isotopes (radio-isotope chronology, alteration, surface     

processes, etc.)

> In-situ measurements, why?
- Complete elemental and isotopic composition

- Normative mineralogy (e.g., grain mineralogy)
- Chemical mapping of heterogeneous materials
- Fractionation by major/minor/trace elements
- Isotopic fractionation: radio-isotope chronology, bio-markers 

- Molecular composition

> Currently used Instruments in space research are based typically 
on remote sensing techniques (dedicated mass range, low detection 
sensitivity in per mill level, lateral resolution, no isotopic composition)


