

Target analytes

Isotope	Primary decay	Surrogate Analyte
¹³⁷ Cs	$^{137m}\text{Ba} \rightarrow ^{137}\text{Ba}$	Salt ¹³³ Cs
²²⁶ Ra	²²² Rn	Salt (¹³⁴ Ba, ¹³⁵ Ba, ¹³⁷ Ba, ¹³⁸ Ba)
⁶⁰ Co	⁶⁰ Ni	Metallic 59Co
¹⁹² lr	¹⁹² Pt	Metallic Ir (191Ir, 193Ir)
⁹⁰ Sr Also an effective n	${}^{90}Y \rightarrow {}^{90}Zr$ nimic for ceramics of sign	ceramic Sr HQ ₃ [*] (⁶⁴ Sr, ⁶⁶ Sr, ⁶⁵ Sr, ⁶⁵ Sr) nificant Actinide oxides: ²⁴¹ AmO ₂ , ²⁵² CfO ₂ , ²³⁸ PuO
⁹⁰ Sr Also an effective n Potential Disper	${}^{90}Y \rightarrow {}^{90}Zr$ nimic for ceramics of sign rsant Explosive	Ceramic Sr IIO ₂ * (°Sr, °Sr, °Sr, °Sr, °Sr) nificant Actinide oxides: ²⁴¹ AmO ₂ , ²⁵² CfO ₂ , ²³⁸ PuO Examples
⁹⁰ Sr Also an effective n Potential Disper Conventional	⁹⁰ Y → ⁹⁰ Zr nimic for ceramics of sign rsant Explosive Nitro(organic)	Ceramic Sr IIO ₂ * (*Sr, *Sr, *Sr, *Sr, *Sr) nificant Actinide oxides: ²⁴¹ AmO ₂ , ²⁵² CfO ₂ , ²³⁸ PuO Examples RDX, HMX, PETN, Tetryl, TNT, Nitroglycerine
⁹⁰ Sr Also an effective n Potential Disper Conventional Peroxide	⁹⁰ Y → ⁹⁰ Zr nimic for ceramics of sign rsant Explosive Nitro(organic) (organic)	Ceramic Sr IIU ₂ * (*Sr, *Sr, *Sr, *Sr, *Sr) nificant Actinide oxides: ²⁴¹ AmO ₂ , ²⁵² CfO ₂ , ²³⁸ PuO Examples RDX, HMX, PETN, Tetryl, TNT, Nitroglycerine TATP
⁹⁰ Sr Also an effective n Potential Disper Conventional Peroxide Black Powder II	${}^{90}Y \rightarrow {}^{90}Zr$ nimic for ceramics of sign rsant Explosive Nitro(organic) (organic) EDs (inorganic)	Ceramic Sr IIO ₃ * (*sr, *Sr, *Sr, *Sr, *Sr) nificant Actinide oxides: ²⁴¹ AmO ₂ , ²⁵² CfO ₂ , ²³⁸ PuO Examples RDX, HMX, PETN, Tetryl, TNT, Nitroglycerine TATP nitrates, chlorates, perchlorates

Obj. 1: Results - Simulated Cs/black-powder RDD Image: Comparison of the system of the syst

Obj. 1: Data Summary – Tasks 1, 4

Obj.1: Ambient Sampling
 Evaluate various surface sampling techniques
 Year 182: Desorption Electrospray Ionization (DESI), DART
 Year 3: Laser Desorption Ionization (LDI), Hybrid Ionization
 Hard, Refractory Materials?

yields molecular

ions

Laser Ionization of Refractory RDD **Components** Ablated Lead Foil Strontium 80 SrOH⁺ titanate Sr⁺ 60 40 20 103.0 Strontium titanate and cobalt 59.00 10 metal are the typical forms of 90-80-70-50-50-40-30-20-10-Metallic 90Sr and 60Co Co^+ cobalt Strontium titanate is also a chemical analog of actinide oxides No signal obtained without helium sheath gas

- No signal for insoluble solids/refractory materials
- High energy laser, inert sheath gas: laser ablationHigh energy laser, ambient: laser ionization
- Organics
 Soluble Salts
 Refractory Materials

 DART
 +++
 +

 DESI
 +++
 +++

 Laser desorption
 ++
 +++
 ++

 Laser ablation
 +++
 ++

Obj. 3: High Speed Digital Frequency Scanning

Conclusions & Future Directions

· IONIZATION:

- · DESI, DART, LDI
- · Multi-mode source configuration, hybridize desorption/ionization processes

SEPARATION:

- · Computational models inform DMS design
- DMS separation of isobars and elemental species promising
- · Explore homologous series

MASS ANALYSIS:

- Continuous ionization (with semi-continuous injection)
 Frequency scanning digital waveforms can enable fast MS scanning up to 1000Hz Resonance ejection mode uses higher scan speeds and pressures so better for
- low power field portable MS?
- Optimize waveform sync, phase locking, to increase resolution

Acknowledgements/Coordination&Collaboration

Theresa Evans-Nguyen <u>C.S. Draper Laboratory</u> Francy Sinatra Spiros Manolakos Kevin Hufford James Alberti Erkinjon Nazarov

Kenyon Evans-Nguyen The University of Tampa Amanda Quinto David Glatter Tiffanie Hargraves

Robert Cotter The Johns Hopkins University – School of Medicine Di Wang Friso Van Amerom

Jing Wang <u>The University of South Florida</u> Tianpeng Wu Adrian Avila