

High-Performance, Militarized Mass Spectrometer System

HEMS 2009 Conference September 22-24, 2009 Santa Barbara, CA

Syagen Technology, Inc. 1411 Warner Avenue Tustin, CA 92780 www.syagen.com

Content

- Portable QitTof[™] (Quadrupole ion trap, time-of-flight) MS
 - > Dual EI/PI source
 - ➤ High speed MS/MS
- Results and Applications
 - > Direct vapor sampling
 - > Fast GC sampling
 - > CW detection in air, soil, and water by PI/QitTof MS/MS
 - BW detection by Py/GC PI/QitTof MS
- HiPR (High-Performance Ruggedized) MS
 - > Partnership with Northrop Grumman
 - > Technical specifications
 - CWA/TICs detection

Latest Portable QitTof MS Systems

FieldMate™ Benchtop MS

22x16x14 in and 60 lb without aerosol collector

HiPR MS

- DoD mobile CWA/TIC capable
- Developed in partnership with Northrop Grumman
- 28x22x17 in and 150 lb

Compact EI/PI QitTof™ MS

Novel differential pumping with splitflow TMP for high gas throughput

Photoionization vs. Electron Ionization

Benefits of photoionization source

- Near universal detection efficiency for many classes of compounds
- Parent ion signal with minimum fragmentation
- Minimum air and solvent signal
- Minimum ion suppression

CW Detection by PI/QitTof MS/MS

PI MS of VX

- Distinct VX parent ion (bottom trace)
- Confirmatory MS/MS (top trace)

PI MS of VX in spiked soil extracts

0.012 mg/mL (0.83 ppm)

Agents detected by PI MS: VX GA, GB, GD, GF HD, HN1, HN2 CR, CS, BZ

CWs and Related Compounds Detected

Chemical Weapons Convention Treaty - Compliance Monitoring Compound List

Schedule-1 compounds	Schedule-2 compounds	Schedule-3 compounds
Toxic	Тохіс	Precursors
VX	BZ	Phosphorus oxychloride
GA (Tabun)		Dimethyl phosphite
GB (Sarin)	Precursors	Trimethyl phosphite
GD (Soman)	Diisopropyl methylphosphonate	Diethyl phosphite
GF	Diethyl methylphosphonate	Triethyl phosphite
	Dimethyl methylphosphonate	Triethanolamine
HD (sulfur mustard)	Diethyl ethylphosphonate	N-ethyldiethanolamine
HN-1 (Nitrogen mustard)	Diethyl methylphosphonothioate	N-methyldiethanolamine
HN-3	Isopropyl methylphosphonic acid	•
	Cyclohexyl methylphosphonic acid	
CR	Pinacolyl methylphosphonic acid	Decomposition Products
CS	Methyl phosphonyl dichloride	
	3-quinuclidinol	Methylphosphonic acid
Precursors (Binary)	Benzilic acid	Ethylmethylphosphonic acid
QL	Pinacolyl alcohol	EMPTA
DF	Thiodiglycol	2-chlorodiethylsulfide
	N,N-diethylethanolamine	
	1,4-dithiane	Other relevant compounds
	Thiodiglycol sulfoxide	
	Methylamine	VX disulfide
	Isopropylamine	ΥL
	Thioxane	

SYAG

Not detected: Phosgene, chloropicrin; Detectable by El

CW Detection in Water

Specifications

- Sensitivity: 1-6 pg and 1-6 ng/mL (3σ MDL) for DMMP, DEMP, DEEP, DIMP
- > P_D , P_{FP} : P_D > 99%, P_{FP} < 0.2% for all four CW surrogates at 30 ng/mL (0.03 mg/L)
- > Dynamic range: 5 decade, >3 decade linear
- > Speed: 45 s per sample by autosampler including 2 washes

Live Agent Testing

Chemical Warfare Agents in H₂O - ppb are in units of (mole analyte)/(mole H₂O)

			,			
Compound	Name(s)	MW	Mass Obs	3σ LOD (ng)	3σ LOD (ppb)	Agent type
HN-1	Bis-(2-chloroethyl)ethylamine	170.08	170	0.131	14	Mustard
HN-3	Tris-(2-chloroethyl)amine	204.54	204	0.071	6	Mustard
GA	Tabun or Ethyl N,N-dimethylphosphoroamidocyanidate	162.13	163	0.354	39	Nerve
GB	Sarin or Isopropyl methylphosphonofluoridate	140.10	141 (99)	1.2 (.239)	154 (31)	Nerve
GD	Soman or Pinacolyl methyl phosphonofluoridate	182.18	99	0.678	67	Nerve
GF	o-Cyclohexyl-methylfluorophosphonate	180.20	99	0.491	49	Nerve
VX	o-Ethyl-3-(2-isopropylaminoethyl)methyl phosphonothiolate	267.38	268	0.166	11	Nerve

Measurements made at ECBC

References

J. A. Syage, S-S. Cai, J. Li, and M. D. Evans, "Direct Sampling of Chemical Weapons in Water by Photoionization Mass Spectrometry" *Anal. Chem.* **78**, 2967-76 (2006).

J. A. Syage, "Guarding Drinking Water Against Chemical Weapons Attack," Water & Wastes Digest 45(1), 22 (2005).

J. Calles, R. Gottler, M. Evans, and J. Syage, "Early Warning Surveillance of Drinking Water by Photoionization Mass Spectrometry," *J. AWWA* **97**(1), 62-73 (2005).

J. Wu, J. Gleenlee, and J. Syage, "Rapid Screening for Chemical Weapons Infiltration in Drinking Water," *J. AWWA* **96**(12), 44-47 (2004).

CW Real-Time Air Sampling

Mole fract.(ppm)	%RSD	LOD (ppb)	LOD (pg)
23.1	3.0%	13.7	33.7
11.5	0.9%	11.4	28.0
5.8	0.9%	9.9	24.3
2.9	2.2%	9.9	24.4
1.2	2.2%	11.9	29.3
0.6	4.7%	7.3	18.0
0.3	9.4%	7.3	18.0

LOD: 10 ppb (DMMP) direct air sampling Corresponds to about 20-30 pg

Dynamic 10 ppb to 30 ppm (nearly linear) Range:

High-Speed, High-Sensitivity GC/QitTof MS

Comparable sensitivity to Agilent 5973 GC/MS (S/N = 20 for 1 pg OFNP)

BW Detection by Py/GC – PI/QitTof MS

Pyrolysis of 3 μ g of E. Coli: Histogram based on the integrated intensities for selected retention times and ion masses

PCA plot showing excellent discrimination for similar gram positive bacteria

Jack A. Syage, Brian J. Nies, and Matthew D. Evans, A. Peter Snyder, Waleed M. Maswadeh, and Ashish Tripathi, "Rapid CB Monitoring by Pyrolysis/GC Photoionization Mass Spectrometry," *Proc. of 2nd Joint Conf. Point Det. for CB Defense,* (2003).

SYAGEN

High Performance Ruggedized (HiPR) MS

Broad spectrum threat detection on a single platform

- Modular hardware and software design
- Detection and identification of all chemical threats in seconds
- Reliable biological detection on the move
- Adaptable, easily reconfigured for changing threat environment

IROP GRUMMAN

SYAGEN

- High sensitivity and selectivity
- Low FAR and high P_D

40"x22"x17", 180 lbs

Demonstrated detection of >17 CWAs and Simulants in solid, liquid, and vapor form at 1000x lower levels than required

NORTHROP GRUMMAN

Demonstrated detection of >25 TICs below Immediately Dangerous to Life and Health (IDLH) values

NORTHROP GRUMMAN

Background and Interferent Rejection

High resolution MS can detect agents in the presence of very complex and 100x more concentrated POLs

Background and Interferent Rejection

High resolution MS can detect agents in the presence of very complex and 500x more concentrated soil backgrounds

Application

Summary

- Major innovations in MS transitioned to product
 - > QitTof MS is an exceptionally powerful analyzer
 - Dual EI/PI is a very flexible multimode source available for widespread screening applications
- Demonstrated detection of wide range of threat compounds
 - > CWs, BWs, TICs, explosives, and narcotics
 - > High performance detection in portable systems
 - 60 Hz MS and 30 Hz MS/MS allows for high-throughput, highspeed screening

- Acknowledgment
 - We are grateful to Northrop Grumman for their support and for the leadership of Dr. Daniel Dickinson
 - This work would not have been possible without the talent and hardwork of the Syagen technical and engineering team

