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Miniaturization and Microfabrication of 
Cylindrical Ion Trap (CIT) Mass Spectrometers

• Miniaturize ion trap mass spectrometers
– Low power and portable

• Array approach
– High sensitivity and parallel analysis

• Microfabrication
– High precision and batch fabrication

Hyperbolic Cylindrical Micro-array
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Cylindrical Ion Trap Easier to Miniaturize
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Computer Simulations to Optimize µ-CIT 
Geometry (zo/ro)

Simulated in ITSIM (Courtesy: R. G. Cooks et al.)
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Buffer Gas Simulations Indicate µ-CITs can 
Operate in Low Vacuum

• Simulated spectra obtained 
from SIMION for a range of 
pressures inside the CIT with 
z0/r0 = 0.97

• ~360 µm radii µ-CITs, 
m/z = 40 & 50 (200 ions/ea)

• Simulations indicate good 
performance of micro traps at 
relatively higher pressures

• No high-vacuum pump? 0 2 4 6 8
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Microfabrication Provides Uniform 3-D 
Structures

• Create high-aspect-ratio 
structures in silicon with high 
precision

• Arrays of half-CITs bonded back-
to-back

• Capacitance reduced by etching 
excess silicon

• Simulations indicate axial 
modulation required

– Strong influence of higher-
order multipoles



• Wafer-level batch fabrication 
approach

• CIT structural layer
– Ring electrode: Au-coated Si (350 µm)
– Endplate electrode: Au-coated Si3N4

(3 µm )
– Dielectric gap: 5 µm thermally grown SiO2
– Cr/Au layer: 150/2500 Å
– A range of radii (325–375 µm) was 

incorporated in the optical mask to 
account for variation in wafer thickness 

• Processes used
– i-line lithography, RIE, DRIE, metal 

sputtering, dicing, flip chip bonding, Au 
wire bonding, SEM analysis, Wyko 
surface analysis
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Microfabrication Approach for CIT Array in 
Silicon

Two arrays of half µ-CITs bonded 
back-to-back using Au-Au thermo-

compression bonding
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KOH Etch after DRIE to Smooth Electrodes

SEM of µ-CIT with aperture diameter 30% of 
ring electrode diameter (~360 µm)

Wall roughness after deep Si etch 
step in DRIE 

Wall roughness after 1.5 min of 
KOH etching 
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Experimental Characterization of 
μ-CIT MS Arrays

µ-CIT array Microchannel
plate detector

0 V

t=20 ms t=30 ms

20 V

-20 V

70 V

-70 V

Electron gun
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μ-CIT Array Fabrication Iterations
Generation I
• Developed a process to fabricate 

CITs in Si
• Thermal compression bonding 

method established
• Feasible SiO2 & Si3N4 layer 

thicknesses ascertained
• High capacitance 640 pF

Generation II
• Au layer patterned
• Low capacitance 90 pF
• RF testing indicated arcing/plasma 

generation
• Need for integration with matched 

ionization source

Generation III
• Si etched between µ-CITs
• Device capacitance 265 pF
• Cylinder wall verticality ~ 89°
• Working prototype (low resolution)
• Summation of spectra

Ar
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New Generation μ-CIT Array Fabrication
Generation IV
• Fabricated in SOI (Silicon-On-

Insulator) wafers
• SOI (40 µm device, 5 µm BOX, 

350 µm handle)
• Gas channels for direct gas 

introduction
• Gradient of z0/r0 ratio for fast 

determination of optimum geometry

Gas Channels

Capillary Insert

Half-thickness 
ring electrode

Endplate electrode

Gradient Design

3x3  Array Design

μ-CIT Array mounted on a 
Au-coated PCB

Endplate Electrode
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Arrays of µ-CITs with Gradient of zo/ro to 
Determine Optimum Geometry

12

zo ≈ 360 µm
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Organic Vapors Analyzed

Ar+

µ‐CIT ms 
(SRI)
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Isotopes of Chlorine Resolved
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Microfabricated Differential Vacuum Chamber
• Differential chamber (DC) allows 

more efficient sample introduction
• Increased sensitivity (3x) with 

apertures 1.2x diameter of CIT 
apertures

• Pressure gradient allows for testing 
higher pressures in trap without 
damaging ion detector

• Investigation into combined inlet 
system and ionization source

Si wafers with multiple DC chips with different 
aperture sizes, after etching the Si3N4 

SEM image of a DC chip showing capillary 
insert and the apertures for electron beam 

Ar+

Ar gas fed into 
vacuum housing

Ar gas fed 
into DC

Ar+

Schematic of DC
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Gas Inlets Matched Ion/Electron Sources
Focusing Grid Array
CIT Endplate Electrodes
CIT Ring Electrodes
CIT Endplate Electrodes
Detector Array
Collectors

Vacuum Pump

Realization of Low-Cost
Micro-Mass Spectrometers

• Requires microfabrication 
and integration of all 
components

• High-density CIT arrays 
for increased sensitivity

• Matched ionization 
sources

• Fast high-gain detector 
for poor vacuum

• Micro vacuum pumps
• Integration into small 

package
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