Modeling the Orion Air Monitor

David E. Burchfield Wai Tak Lee William Niu Andrew Pargellis

Orion Air Monitor Heritage

OAM derived from three onorbit analyzers

- Skylab Air Monitor
- ISS Major Constituent Analyzer (MCA)
- Spacelab Metabolic Gas Analyzer Mass Spectrometer (GAMS)

Challenges

- Drive mass to ~1/2 Skylab sensor mass
- > Higher mechanical loads

Air Monitor Performance Requirements

The OAM monitors major constituents in CEV air:

- Supports cabin and suit loop operation
- Provides feedback for swing bed and pressure control system operation

Analyte	Pressure Range /psia	Accuracy at Nominal Concentration /psi	Response Time /sec
Oxygen	0 – 24	0.1	10
Nitrogen	0 – 13	0.1	10
Carbon Dioxide	0 – 0.5	0.005	10
Water Vap	0 – 0.5	0.01	15

Parameter	Specification	Performance Target
Weight	18.6 lbs	15.6 lbs
Power	120V, 25 W	17 W (nominal)
Communications	RS422	460kbs

Analyzer core

- Small 'sensor class' magnetic sector mass spectrometer
- Flight heritage
- Minimized mass, optimized response time, for CEV application

OAM Pneumatic Block Diagram

Sample is provided by a 150 cc/min bypass in the suit loop

Instrument sips 1E-5 stdcc/s air

High Reliability design:

- Two moving parts (valves); can go an entire mission without actuation.
- On-orbit calibration provides measurement accuracy verification
- Analyzer maintained with low power ion pump/getter.

Top-Level OAM Simulink® Model

Simion® Model of a Magnetic Sector Mass Spectrometer

A single sector analyzer can simultaneously detect these four analytes, and more, with dedicated Faraday collectors.

ISS MCA Components for Water Response

Elements of the Inlet Water Response Time

Improving water response time for the CEV application requires opening up the diameter of one line (Cv-is), eliminating the complex inner volumes of the sample valve, and heating the inlet to > 90C.

OAM H₂O Response vs Inlet Temperature and Pressure

The Skylab/ISS-based analyzer can easily meet CEV response time requirements

Improvements required:

- Heat inlet > 90C
- Modify inlet valve for improved conductance
- Modify conductance to the source to minimize pressure in the inlet

Other improvements noted:

- New inlet valve allows elimination of support equipment
- Lining the analyzer with a passivating layer can reduce the background amplitude

Optimized CEV OAM Topology

The OAM is optimized for power, weight, and response time. The instrument relies on the ECLS ARS for sample flow, and gets response time down with improved inlet conductance and heated inlet components.

Vacuum System Blow-down

ISS analyzer water background shows two long timeconstant terms Traced to water binding, and dissociating, on vacuum system surfaces Mitigated by heating analyzer or passivating surfaces

Submitution Energies for Water Dound to Orean Areas parates [
Surface	∆Hs / kJ/mol	∆H1 / kJ/mol	∆H2 / kJ/mol	
Cr	-50	-205	-324	
Fe	-50	-59	-163	

Stabilization Energies for Water Bound to Clean Metal Surfaces [Thiel]

Со	-50	-72	-113
Ni	-50 (-42)	-53	-93
Cu	-50	+10	-44
Zn	-50	-123	-201
Ag	-50	+69	+131
Au	-50 (-4)	+51	+170

Thermal Desorption Temperatures for Water on Selected Metal Oxides

Surface	Bare Metal TDS /K	Oxide or O ₂ -doped TDS /K
Cu	175	290
Ni	370, 270, 235, 170	360-380
Ag	150	320

P. A. Thiel and T. E. Maddey. 1987. *The Interaction of Water With Surfaces: Fundamental Aspects*. Surface Science Reports, v. 7, p. 211-385.

Integration with CEV: Modeled behavior through a Swing Bed cycle.

Summary

The OAM was modeled in Simulink and SIMION Fidelity of the models verified against ISS MCA Used to define model-based tuning Evaluated requirements to meet water response time Optimization of water response Inlet passivation, heating, and conductance Analyzer inner surfaces passivated Characterized analyzer/algorithm behavior in CEV application