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e Potential varies quadratically in x,y orinr,z

e Electric field is linear over the same variables

e Metal electrodes represent equipotential boundary conditions
e RF applied to metal electrodes produces quadrupolar field

e Time-varying quadrupolar fields allow trapping, mass analysis

Hvpoerbolic surfaces nroduce auadrupoolar fields
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cXampie. vwwang s conic section trap
e Quadrupolar field made using two cones of wire rings
e Potential between rings varies linearly

e Resulting field is (approximately) quadrupolar

Wire rings connected with resistors

In the limiting case of an infinite number of rings this resembles a resistive materia

However, good fields are obtained with only a few rings due to averaging
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Three-fold Motivation Behind This Work:

e Explore Electric Fields

Independently adjust higher order multipoles

e Novel Trap Geometries Possible

Paul trap, toroidal, coaxial, others

e Mass Analyzer Miniaturization

Combines microlithography with accurate electric fields



A uadrupole 1on 1rap maade using microraoricatead electrode:

Made using two plates, each lithographically imprinted with
concentric ring electrodes, coated with germanium
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Axial electric field

igher order components
axial field

ield components easily
djustable by varying
otentials on rings
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Modifying Higher-order Multipoles

All cylindrically symmetric potentials can be expressed as:

D(p,0,4,0) = Do) A (L) P (cos0)

quadrupole (I=2), hexapole (I1=3), octopole (I1=4), etc.

‘ariables: position and voltage on each ring, plate spacing, hole size

or a given physical design, superposition allows us to combine multipole expansio

2sulting from each ring:

Ring 1 Ring 2 Ring 3 .. | Ring m
A, -0.100032| 0.103965| 0.155169| ... | A.m
Ay 0.568701| 0.330117| 0155211 |... | Aym
Ag 0.352728 | -0.001885| -0.071216| ... | A;m
Ag -0.360680| -0.170844 | 0.146052| ... | Agm
A A A A A 2 A 11




Toroidal lon Trap
Lammert et al, IIMS, 2001.

ons trapped, stored in a torus (ring)

>lits in endcaps for ion ejection and
ctron beam

_arge storage capacity

The Halo lon Trap
Austin et al, Anal. Chem. 2007

Electron
ionization§\«l/‘l

lon storage

Ejection and detection




Original Halo ion trap

Radial ejection

dichloromethane
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Two traps in one
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Radial and axial potentials and fields
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otivation

Smaller mean free path — higher
operating pressure, smaller pump

Reduced power — smaller batteries
Instrument portability

Lower cost

Y-electrode
. base

Inlets

Why ion traps?

e Higher tolerance to pressure
e Amenable to GC-MS, LC-MS
e Tandem MS capabilities

e Frequency, voltages scale
favorably

X-electrode
i



(esp. ion traps)

aking accurate fields:
Machining / fabrication accuracy
Electrode alignment

Surface roughness

ractical issues:
Reduced access for ions or ionizing radiation
Reduced ion count (space charge)

Keeping arrayed traps parallel

Insufficient stopping distance to trap ions

from Austin et al, JASMS 20(
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urrent paradigm: take a 3-dimensional structure (the ion trap), scale it down smalle
th minor simplifications in geometry. Essential 3-D device structure remains.

icrofabrication technology produces 2%z dimensional devices

ow do we exploit the high precision of 2 dimensions?

' |l ﬁ)ole

Quadrupole ion trap Rectilinear ion trap mass filter

or Paul trap

Cvlindrical ion trao Toroidal ion trap tran




e
-

e Surface planarity, roughness controlled to within tens of nanometers
e Uses microfabrication methods

e Sub-micron mechanical tolerances

e Alignment simplified: only two pieces

e Larger access area for ionization or pumping

e Sturdy—no tiny parts as there are with MEMS

e Ceramic disks can be any thickness—greater strength

e The two plates have identical potential distributions, so capacitance
does not increase as they are moved together

e Economy of scale—potentially lower cost than machined electrodes
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