Microfabrication of µ-cylindrical ion trap mass spectrometer arrays

F.H.W. van Amerom¹, A. Chaudhary², R.T. Short²

¹University of South Florida, College of Marine Science Center for Ocean Technology

²SRI International, Marine Technology Program

Outline

Part I Mass spectrometry and miniaturization

Part II Micro CIT-MS and simulations

Part III MEMS fabrication of micro ion trap arrays

Part IV Experimental results & Conclusions

Mass spectrometry and miniaturization Why miniaturize?

<u>Advantages</u>

Small package for field applications
Real-time continuous monitoring of chemicals
Low production costs if using MEMS

Trade off

Loss of sensitivity, selectivity
Often simplistic inlet systems
Small mass range

We chose to miniaturize quadrupole ion traps

Operates at moderate vacuum
Capable of MSⁿ
Sensitivity excellent

1.25 m ↔

Quadrupole ion trap v.s. cylindrical ion trap

 $V_{rf} = \frac{mq_z r_0^2 \Omega^2}{4A_2 e}$

•Cylindrical structure easy to machine while quite similar electric potential

•Lower power but electric potential well depth reduced

Quadrupole ion trap v.s. Cylindrical ion trap

Simulations to optimize CIT geometry

MEMS fabrication of CIT array

•High resolution, sensitivity, mass range, power consumption

Low voltages, portable, parallel analysis, operation at moderate vacuum,
Arrays should lead to

increased sensitivity

MEMS fabrication of CIT array

Capabilities of MEMS facility: PECVD, RIE, DRIE, e-beam evaporator, 4 tube LPCVD and 2 sputtering systems, JEOL SEM, the Hitachi high resolution SEM and the FEI dual beam FIB.

Process flow

- A) SiO₂ grown, LPCVD Si₃N₄ deposited on Si.
- B) Si_3N_4 and SiO_2 patterned.
- C) Si_3N_4 patterned and etched on the backside: SiO_2 was partially etched in BOE.
- D) Si etched using DRIE.
- E) Residual SiO_2 etched in HF 49%.
- F) Cr/Au layer sputtered onto both sides to obtain a conductive half μ -CIT structure.
- G) Two half structures bonded back to back.

Results: MEMS fabrication

•Three design iterations
•DRIE parameters were optimized for radius 360 µm to obtain a cylinder wall verticality of better than 89 °
•Different sizes could be fabricated with minor process adjustments
•Capacitance reduced to 215 pf

Results: MEMS fabrication

•3-D profile of the Si_3N_4 membranes showing outward bow. •μ-CIT arrays were mounted on a customized Au plated PCB for testing.

Experimental setup

•PFTBA spectra (buffer gas helium) from each individual CIT

•Sum of all spectra shows increase in intensity

•Spatial representation of peak height

•Sum of all Argon spectra shows increase in intensity

Future

Acknowledgement

- •R.G. Cooks et al. for providing ITSIM software
- •S. Samson, W. Wang, J. Bumgarner and other colleagues at the MEMS facility in Largo for their suggestions
- •Distribution A
- •SRI International IR&D program (ESD)