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Objectives

• Goal: Develop a new class of in situ neutral particle detector for 
measurements of the neutral atmosphere and orbital environment
– Neutral density, including reactive species
– Velocity and energy distribution
– Composition

• Desired instrument characteristics
– High field-of-view without moving parts

• Accommodation on a variety of spacecraft, including sounding rockets
• 100% duty cycle, even on spinning satellites

– Imaging capability
• Induced environment applications (outgassing, rendezvous / docking, etc.)
• Spatial discrimination of background
• Neutral wind measurements

– Maximum sensitivity and dynamic range for a wide range of altitudes
– Autonomous operation and low demand on spacecraft resources
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VNPS Concept

• High FOV (2.8π sr)
– Central, open ionizer
– Transparent mesh-based ion optics

• Ionizer
– Compact, well-defined electron impact ionization volume
– Collisionless ‘fly-through’ ionization for accurate reactive 

species measurement
– COTS LaB6 thermionic emitter, interchangeable with 

Spindt cathode array for long operational lifetime and 
reduced power requirements

– Pierce-type electron focusing optics design
• Ion optics

– Retarding potential analyzer (RPA) for energy analysis and 
rejection of local outgassing background

– Acceleration grid generates trajectories directed radially
outward from central axis of sensor

– Deflection grid redirects and focuses ions to UV-
attenuating slit

– Field-free region for dispersion and/or TOF analysis
• Detector

– Microchannel plate detector for single ion counting
– Crossed delay-line anode allows imaging readout

• Background reduction
– Black collimator for solar UV suppression (not shown)
– Plasma grids reject ambient ions and electrons

Ion optics design (SIMION trajectories)
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Neutral 
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Plasma Rejection Grids
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Field of View and Spacecraft Accommodation

Sensor cutaway showing 
toroidal FOV

Two sensors oriented on satellite vertices with primary 
axes normal to each other, yielding 4π sr FOV (GPS)
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Sensor Potentials and Electric Fields
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Imaging Performance

Energy effects…
– …on spot size: both azimuth and 

elevation (negligible)
– …on spot centroid location: 

elevation only (negligible at low 
energies)

– …minimized when Eacc >> Eion

Ionizer height

Ionizer 
width

θ = 0º

θ = 15º

θ = 30º

φ = -45º

φ = -45º

φ = 0º

φ: elevation
θ: azimuth

centroiding
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Modes of Operation
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TOF-MS Capability

• Beam modulation at annular slit 
allows time-of-flight analysis, 
even over short (3 cm) drift length

• Duty cycle
– Traditional operation: ~4% to m/z 50, 

2% to m/z 200; mass dependent.
– Pseudorandom modulation / Hadamard

Transform: 50%; mass independent.  
No limit to mass scanning range.

• Mass resolution determined 
primarily by modulation bin width

• Sensor design not optimized for 
TOF-MS performance

Simulated TOF Spectrum: E = 200 eV, τmod = 50 ns
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Ion Optics Performance Summary

• Field of view
– φ: ±45º, θ: 0-360º
– 2 properly oriented sensors cover 4π sr with 41.4% FOV overlap

• Angular resolution
– With centroiding

• Elevation: ~1º @ 0-1 eV, ~5º @ 0-5 eV
• Azimuth: no limit 

– Single ion detection
• Elevation: ~10-14º
• Azimuth: ~8-9º

• Theoretical ion transmission
– ~50-70% (angle dependent)

Total angular resolution 
will optimally be detector-

limited, and will only 
improve with the use of 

multiple sensors
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Ionizer Design Challenges
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Ie-• Ionizer design goals
– ≥1 mA, 70-200 eV, 1 mm diameter, 2 mm long 

electron beam (open ionizer)

• Space charge forces
– Repulsive → electron beam divergence 

• Requires focusing optics
• Must limit electron path length
• Increased electron energy somewhat beneficial

– Attractive → ion trapping (unintended RPA) or 
trajectory deflection (degradation or loss of imaging)
• Potential well depth scales with beam current
• Compensation by ionization of background gas occurs 

to some degree (pressure and time dependent)
• Possible advantages: ion accumulation for increased 

sensitivity, alternate approach to TOF-MS
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Electron Emission Sources

• Field emission (Spindt cathode array)
– Very high electron current densities - up to 2000 A/cm2 (≤20 A 

from 1 mm cathode)
– “Cold cathode” operation, low power requirements
– Long lifetime (demonstrated continuous operation - years)
– High initial kinetic energies

• COTS cathodes produce electron beams of high divergence
• Requires integrated focusing electrode for low-energy collimated 

beam

• Thermionic emission (LaB6 cathode)
– Current densities up to 30 A/cm2 (≤30 mA from 330 μm cathode)
– Low initial kinetic energies (thermal distribution)
– High temperature operation (1700-1900 K), moderate power 

requirements (heating current ~ 2 A @ 2.5 V)
– Short lifetime at high currents (100’s of hours)
– Relatively inexpensive and replaceable

• Goal: Develop robust, plug-and-play ionizer

-100 V 0 V0 V -97 V

Prototype sensor: 
LaB6 cathode

Flight sensor: Spindt cathode

Integrated focusing electrode

Gate electrode
FE tip
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Electron Focusing Optics Design and Analysis

10 mA, 200 eV electron beams with varying degrees of space charge compensation:

Spindt cathode field emitter (100 eV initial KE) LaB6 thermionic emitter (0.2 eV initial KE)
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Initial KE: 0.2 eV

-221 V 

-200 V 

T = 65%

1.25 mm

Electron Beam Testing

Electron beam focusing, 200 eV
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Ionizer ‘lens stack’ prototype for electron focus testing:

Observed transmission for an 
apparently well-focused beam:

LaB6 cathode (Kimball Physics):
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Ionizer Mechanical Design

Cathode

Pierce-type focusing 
electrode

Accelerating grid

Ionizer assembly and electron focusing optics Custom ceramic base and heat-sink design
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MCP-XDL Detector

XDL Theory of Operation

Crossed delay lines allow 
spatially sensitive readout 

of MCP

Coincidence loss becomes 
significant at count rates 

above ~100 kHz

10 μm resolution mask produces 
37-50 μm FWHM spots

Uniform detector response Low background count 
rates:   5 s-1 @ 4400 V

MCP-XDL (Sensor Sciences)
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UV Attenuation

• Flux of UV photons reaching 
detector must be minimized to 
maintain low background rates
– α-Lyman (sun): ~1011 ph/cm2/s
– Bacground reduction improves 

sensitivity
• UV flux into sensor acceptance 

area reduced by a converging 
collimator

• Direct illumination of the detector 
eliminated by incorporation of 
slits, baffles, and coatings

• Stray-light modeling used to 
predict performance
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Conditions:
1) Detector is the annular ion aperture
2) All scatter surfaces have a 2% diffuse reflectivity
3) Only single scatter paths are considered
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Collimator Design and Fabrication
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Sources for Sensor Testing

• Ion beam (ion trajectory validation)
– Tunable energy and current
– Narrow energy distributions (~0.5 eV FWHM)
– Decouples electron beam space charge effects 
– Requires low-profile, field-free entrance slit to prevent 

ion deflection by electrostatic potentials on meshes
– Beam characteristics are strongly dependent on energy

• Neutral beam (ionizer and integrated sensor testing)
– Energy range limited, but sufficient for effective sensor 

testing (~0-10 eV)
– Extremely narrow energy distributions possible
– Beam profile is independent of energy
– Necessary for investigation of electron beam space 

charge effects and integrated sensor testing
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SDL Ion Optics Test Facility

Low-energy 
ion gun

3-axis translation, 2-axis 
rotation, 2-axis tilt 

motion manipulator

UHV test 
chamber
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Ion Optics Testing
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Conclusions

• We have designed and modeled a novel, high field-of-view 
Vector Neutral Particle Spectrometer for measurements of 
the orbital environment

• We have demonstrated the production of a focused 
electron beam suitable for use in open ionizers

• SDL has developed laboratory test facilities for the 
experimental validation of mass spectrometers and ion 
optics systems

• Preliminary studies indicate excellent agreement between 
predicted and observed performance of the VNPS



Supplementary Slides
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System Thermal Design

Radiation from sun: 
38.2 watts
Assume: 
-Full cross sectional area
-Solar absorptivity = .97

Radiation to space: 
47 watts
Assume: 
-View Factor to space = 1.0
-Emissivity = .97
-Collimator operating at 30ºC
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Fabrication of Curved Meshes

Manufacturing Method
– Construct solid SST mandrel at SDL
– Send to Precision E-Forming for nickel 

striking
– Send to Intelligent Micro Patterning for 

3D lithography
– Send to Precision E-Forming for 3D 

electroforming
– Return to SDL for part removal and 

installation
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Emitter Current Saturation Curves

Emission vs. Heater Current
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Electron Beam Focusing

Electron beam focusing, <200 eV
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Electron beam focusing, <250 eV
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Ion Optics Challenges {Solutions}

1 mm 1 mm

0 V 0 V-500 V

35/49 ions 
transmitted

1 mm 1 mm

0 V 0 V-500 V
36/49 ions 
transmitted

*cross sections of 3D simulations

• Non-ideal grids (field penetration)
– Micro-lensing → ion trajectory deflections 

{minimize electric fields, optimize individual 
meshes}

• Mean α ≤ 2.5º
– Effective grid potential < applied potential 

{determine this relationship as a function of 
electric field for a given grid}

• Field penetration is localized; effective 
potential barrier is predictable and “smooth”

0.1 eV ions

0.1 eV
ions

α

α

Potential map
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More Ion Optics Challenges {Solutions}

• Entrance angle effects
– Non-uniform low-energy ion filtering {end-cap 

electrodes}
• Energy effects

– Non-uniform potential gradients and ion 
trajectories {spherical energy analyzing grids}

0 V

0.08 V

-500 V

0 V

0.03 V

-500 V

0.3 V

Ion energies: 0.1 eV, 0.5 eV

Potential map
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