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Objectives

* Goal: Develop a new class of In situ neutral particle detector for
measurements of the neutral atmosphere and orbital environment
— Neutral density, including reactive species
— Velocity and energy distribution
— Composition
 Desired instrument characteristics

— High field-of-view without moving parts
« Accommodation on a variety of spacecraft, including sounding rockets
* 100% duty cycle, even on spinning satellites

— Imaging capability

 Induced environment applications (outgassing, rendezvous / docking, etc.)

 Spatial discrimination of background
* Neutral wind measurements

— Maximum sensitivity and dynamic range for a wide range of altitudes
— Autonomous operation and low demand on spacecraft resources




VNPS Concept

— Central, open ionizer
— Transparent mesh-based ion optics

* High FOV (2.87 sr) Axis of Symmetry>

Plasma Rejection Gr\ids
lonizer \\4"

Retarding Potential
Analyzer (RPA)

/ Acceleration Grid
/

4|—/> ¥/
- / . 4_Hemispherical
| ﬁ\ .. Deflector Grid

* lonizer
— Compact, well-defined electron impact ionization volume

— Collisionless ‘fly-through’ ionization for accurate reactive
species measurement

— COTS LaB, thermionic emitter, interchangeable with
Spindt cathode array for long operational lifetime and
reduced power requirements

— Pierce-type electron focusing optics design
* lon optics

Inc¢
— Retarding potential analyzer (RPA) for energy analysis and
rejection of local outgassing background Ne

— Acceleration grid generates trajectories directed radially Parti
outward from central axis of sensor

— Deflection grid redirects and focuses ions to UV-
attenuating slit

— Field-free region for dispersion and/or TOF analysis
* Detector
— Microchannel plate detector for single ion counting
— Crossed delay-line anode allows imaging readout
* Background reduction
— Black collimator for solar UV suppression (not shown)
— Plasma grids reject ambient ions and electrons
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Field of View and Spacecraft Accommodation

/—x
( Two sensors oriented on satellite vertices with primary
\ Sensor cutaway showing axes normal to each other, yielding 4z sr FOV (GPS)
toroidal FOV




Sensor Potentials and Electric Fields
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Imaging Performance
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Modes of Operation

Imaging Mode TOF Mode, Beam ‘On’ TOF Mode, Beam ‘Off’




Beam modulation at annular slit
allows time-of-flight analysis,
even over short (3 cm) drift length

Duty cycle

— Traditional operation: ~4% to m/z 50,
2% to m/z 200; mass dependent.

— Pseudorandom modulation / Hadamard
Transform: 50%; mass independent.
No limit to mass scanning range.

Mass resolution determined
primarily by modulation bin width

Sensor design not optimized for
TOF-MS performance

TOF-MS Capability

relative abundance

Simulated TOF Spectrum: E =200 eV, Tmoq = 50 ns
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lon Optics Performance Summary

* Field of view
— ¢: £45°, 0: 0-360°
— 2 properly oriented sensors cover 47w sr with 41.4% FOV overlap

* Angular resolution

— With centroiding
« Elevation: ~1° @ 0-1 eV, ~5° @ 0-5 eV

 Azimuth: no limit

Total angular resolution
will optimally be detector-
limited, and will only
— Single 1on detection Improve with the use of

» Elevation: ~10-14° multiple Sensors

* Azimuth:; ~8-9°

* Theoretical ion transmission
— ~50-70% (angle dependent)




lonizer Design Challenges

* Tonizer design goals

— 21 mA, 70-200 eV, 1 mm diameter, 2 mm long
electron beam (open ionizer)

* Space charge forces
— Repulsive — electron beam divergence
» Requires focusing optics
« Must limit electron path length 1 mm
 Increased electron energy somewhat beneficial

— Attractive — 1on trapping (unintended RPA) or
trajectory deflection (degradation or loss of imaging) %

35
30
25
20
15

« Potential well depth scales with beam current

« Compensation by ionization of background gas occurs
to some degree (pressure and time dependent)

otential (V)

P
=
o

» Possible advantages: ion accumulation for increased s . W
sensitivity, alternate approach to TOF-MS 2 1 0 1 2

Displacement (mm)
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Electron Emission Sources

* Field emission (Spindt cathode array)

Very high electron current densities - up to 2000 A/cm? (<20 A
from 1 mm cathode)

“Cold cathode” operation, low power requirements
Long lifetime (demonstrated continuous operation - years)
High initial kinetic energies

* COTS cathodes produce electron beams of high divergence

* Requires integrated focusing electrode for low-energy collimated
beam

* Thermionic emission (LaB, cathode)

Current densities up to 30 A/cm? (<30 mA from 330 um cathode)
Low initial kinetic energies (thermal distribution)

High temperature operation (1700-1900 K), moderate power
requirements (heating current ~2 A @ 2.5 V)

Short lifetime at high currents (100’s of hours)

Relatively inexpensive and replaceable

* Goal: Develop robust, plug-and-play ionizer
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a. Close-up of single tip

o L

b. Portion of 10,000-tip array

Gate electrode
FEtip «~

-

- 97V
100V oV “—

Integrated focusing electrode

Prototype sensor:
LaB, cathode

Flight sensor: Spindt cathode
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Electron Focusing Optics Design and Analysis

10 mA, 200 eV electron beams with varying degrees of space charge compensation:

Spindt cathode field emitter (100 eV initial KE) LaB5 thermionic emitter (0.2 eV initial KE)

S

Acceleration B

~ mesh 339%
Focusing
electrode Current
Cathode collector
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Electron Beam Testing

lonizer ‘lens stack’ prototype for electron focus testing: Electron beam focusing, 200 eV
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lonizer Mechanical Design

lonizer assembly and electron focusing optics Custom ceramic base and heat-sink design
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MCP-XDL Detector

MCP-XDL (Sensor Sciences)

XDL Theory of Operation

Crossed delay lines allow
spatially sensitive readout  prampr ooy

SAANNNAY,
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of MCP S SRR
Vi) g
Coincidence loss becomes "o preamp
. o Vi) -
significant at count rates .[_V. preamp| ¥ meam%
above ~100 kHz Ly VO A70)

10 um resolution mask produces Low background count
37-50 um FWHM spots rates: 5s! @ 4400V
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UV Attenuation

* Flux of UV photons reaching
detector must be minimized to
maintain low background rates

— a-Lyman (sun): ~10'! ph/cm?/s

— Bacground reduction improves

sensitivity
« UV flux into sensor acceptance
area reduced by a converging -
. ,/
collimator —
* Direct illumination of the detector L
eliminated by incorporation of
slits, baffles, and coatings 5 e | T —r
 Stray-light modeling used to T i e S G
. . ./"“/ﬁ\"\:\w\
predict performance ~] -
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= Source Angle (degrees)
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Collimator Design and Fabrication
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Sources for Sensor Testing

* Jon beam (ion trajectory validation)
— Tunable energy and current
— Narrow energy distributions (~0.5 eV FWHM)
— Decouples electron beam space charge effects

— Requires low-profile, field-free entrance slit to prevent
ion deflection by electrostatic potentials on meshes

— Beam characteristics are strongly dependent on energy

* Neutral beam (ionizer and integrated sensor testing)

— Energy range limited, but sufficient for effective sensor
testing (~0-10 eV)

— Extremely narrow energy distributions possible
— Beam profile is independent of energy

— Necessary for investigation of electron beam space
charge effects and integrated sensor testing




SDL lon Optics Test Facility

3-axis translation, 2-axis
rotation, 2-axis tilt
motion manipulator
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lon Optics Testing

5eV Ar*, 0 V acceleration potential 5 eV Ar*, 500 V acceleration potential
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Conclusions

 We have designed and modeled a novel, high field-of-view
Vector Neutral Particle Spectrometer for measurements of
the orbital environment

* We have demonstrated the production of a focused
electron beam suitable for use in open 10nizers

* SDL has developed laboratory test facilities for the
experimental validation of mass spectrometers and 1on
optics systems

* Preliminary studies indicate excellent agreement between
predicted and observed performance of the VNPS
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Supplementary Slides
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System Thermal Design

Radiation from sun: Radiation to space:

38.2 watts 47 watts

Assume: Assume:

-Full cross sectional area -View Factor to space = 1.0
-Solar absorptivity = .97 -Emissivity = .97

-Collimator operating at 30°C
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Manufacturing Method

Fabrication of Curved Meshes

Construct solid SST mandrel at SDL
Send to Precision E-Forming for nickel
striking

Send to Intelligent Micro Patterning for
3D lithography

Send to Precision E-Forming for 3D
electroforming

Return to SDL for part removal and
installation



Emitter Current Saturation Curves

Emission vs. Heater Current
Variable acceleration potential, V.. = 200 V - (Ignission X 90 KQ)
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Electron Beam Focusing
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Bectron beam focusing, <200 eV Blectron beam focusing, <250 eV
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lon Optics Challenges {Solutions}

* Non-ideal grids (field penetration)

— Micro-lensing — ion trajectory deflections
{minimize electric fields, optimize individual
meshes}

e Mean a<2.5°

— Effective grid potential < applied potential
{determine this relationship as a function of
electric field for a given grid}

 Field penetration is localized; effective
potential barrier is predictable and “smooth”

500V oV
36/49ions OV

transmitted

_____________ :f_____________m <
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Potential map

-500 V oV
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*cross sections of 3D simulations
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More lon Optics Challenges {Solutions}

 Entrance angle effects

— Non-uniform low-energy ion filtering {end-cap
electrodes}

* Energy effects

— Non-uniform potential gradients and ion
trajectories {spherical energy analyzing grids}

Potential map

lon energies: 0.1 eV, 0.5 eV
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