A Vector Neutral Particle Spectrometer for Space Environment Measurements

The 6th Harsh-Environment Mass Spectrometry Workshop Cocoa Beach, FL Sept. 18, 2007

Dr. Erik Syrstad, Dr. James Dyer, Michael Watson, Dr. John Stauder Space Dynamics Laboratory

Dr. Charles Swenson

Utah State University

Objectives

- Goal: Develop a new class of *in situ* neutral particle detector for measurements of the neutral atmosphere and orbital environment
 - Neutral density, including reactive species
 - Velocity and energy distribution
 - Composition
- Desired instrument characteristics
 - High field-of-view without moving parts
 - Accommodation on a variety of spacecraft, including sounding rockets
 - 100% duty cycle, even on spinning satellites
 - Imaging capability
 - Induced environment applications (outgassing, rendezvous / docking, etc.)
 - Spatial discrimination of background
 - Neutral wind measurements
 - Maximum sensitivity and dynamic range for a wide range of altitudes
 - Autonomous operation and low demand on spacecraft resources

VNPS Concept

- High FOV $(2.8\pi \text{ sr})$
 - Central, open ionizer
 - Transparent mesh-based ion optics
- Ionizer
 - Compact, well-defined electron impact ionization volume
 - Collisionless 'fly-through' ionization for accurate reactive species measurement
 - COTS LaB₆ thermionic emitter, interchangeable with Spindt cathode array for long operational lifetime and reduced power requirements
 - Pierce-type electron focusing optics design
- Ion optics
 - Retarding potential analyzer (RPA) for energy analysis and rejection of local outgassing background
 - Acceleration grid generates trajectories directed radially outward from central axis of sensor
 - Deflection grid redirects and focuses ions to UVattenuating slit
 - Field-free region for dispersion and/or TOF analysis
- Detector
 - Microchannel plate detector for single ion counting
 - Crossed delay-line anode allows imaging readout
- Background reduction
 - Black collimator for solar UV suppression (not shown)
 - Plasma grids reject ambient ions and electrons

Ion optics design (SIMION trajectories)

3

Field of View and Spacecraft Accommodation

Two sensors oriented on satellite vertices with primary axes normal to each other, yielding 4π sr FOV (GPS)

Sensor Potentials and Electric Fields

Imaging Performance

Modes of Operation

TOF-MS Capability

- Beam modulation at annular slit allows time-of-flight analysis, even over short (3 cm) drift length
- Duty cycle
 - Traditional operation: ~4% to *m/z* 50, 2% to *m/z* 200; *mass dependent*.
 - Pseudorandom modulation / Hadamard Transform: 50%; *mass independent*. No limit to mass scanning range.
- Mass resolution determined primarily by modulation bin width
- Sensor design not optimized for TOF-MS performance

*0.03 - 2 eV ions, all elevation angles (±45°)

Ion Optics Performance Summary

• Field of view

- $-\phi: \pm 45^{\circ}, \theta: 0-360^{\circ}$
- -2 properly oriented sensors cover 4π sr with 41.4% FOV overlap

Angular resolution

- With centroiding
 - Elevation: ~1° @ 0-1 eV, ~5° @ 0-5 eV
 - Azimuth: no limit
- Single ion detection
 - Elevation: ~10-14°
 - Azimuth: ~8-9°

Theoretical ion transmission

 $-\sim$ 50-70% (angle dependent)

Total angular resolution will optimally be detectorlimited, and will only *improve* with the use of multiple sensors

Ionizer Design Challenges

- Ionizer design goals
 - − ≥1 mA, 70-200 eV, 1 mm diameter, 2 mm long electron beam (open ionizer)
- Space charge forces
 - **Repulsive** \rightarrow electron beam divergence
 - Requires focusing optics
 - Must limit electron path length
 - Increased electron energy somewhat beneficial
 - Attractive → ion trapping (unintended RPA) or trajectory deflection (degradation or loss of imaging)
 - Potential well depth scales with beam current
 - Compensation by ionization of background gas occurs to some degree (pressure and time dependent)
 - Possible advantages: ion accumulation for increased sensitivity, alternate approach to TOF-MS

10

Electron Emission Sources

• Field emission (Spindt cathode array)

- Very high electron current densities up to 2000 A/cm² (≤20 A from 1 mm cathode)
- "Cold cathode" operation, low power requirements
- Long lifetime (demonstrated continuous operation years)
- High initial kinetic energies
 - COTS cathodes produce electron beams of high divergence
 - Requires integrated focusing electrode for low-energy collimated beam

• Thermionic emission (LaB₆ cathode)

- Current densities up to 30 A/cm² (\leq 30 mA from 330 µm cathode)
- Low initial kinetic energies (thermal distribution)
- High temperature operation (1700-1900 K), moderate power requirements (heating current ~ 2 A @ 2.5 V)
- Short lifetime at high currents (100's of hours)
- Relatively inexpensive and replaceable
- Goal: Develop robust, plug-and-play ionizer

Flight sensor: Spindt cathode

Electron Focusing Optics Design and Analysis

10 mA, 200 eV electron beams with varying degrees of space charge compensation:

12

Electron Beam Testing

Ionizer Mechanical Design

Ionizer assembly and electron focusing optics

Custom ceramic base and heat-sink design

MCP-XDL Detector

MCP-XDL (Sensor Sciences)

Uniform detector response

10 μm resolution mask produces 37-50 μm FWHM spots

Low background count rates: 5 s^{-1} @ 4400 V

UV Attenuation

- Flux of UV photons reaching detector must be minimized to maintain low background rates
 - α -Lyman (sun): ~10¹¹ ph/cm²/s
 - Bacground reduction improves sensitivity
- UV flux into sensor acceptance area reduced by a converging collimator
- Direct illumination of the detector eliminated by incorporation of slits, baffles, and coatings
- Stray-light modeling used to predict performance

Collimator Design and Fabrication

Sources for Sensor Testing

- Ion beam (ion trajectory validation)
 - Tunable energy and current
 - Narrow energy distributions (~0.5 eV FWHM)
 - Decouples electron beam space charge effects
 - Requires low-profile, field-free entrance slit to prevent ion deflection by electrostatic potentials on meshes
 - Beam characteristics are strongly dependent on energy
- Neutral beam (ionizer and integrated sensor testing)
 - Energy range limited, but sufficient for effective sensor testing (~0-10 eV)
 - Extremely narrow energy distributions possible
 - Beam profile is independent of energy
 - Necessary for investigation of electron beam space charge effects and integrated sensor testing

SDL Ion Optics Test Facility

Ion Optics Testing

20

- We have designed and modeled a novel, high field-of-view Vector Neutral Particle Spectrometer for measurements of the orbital environment
- We have demonstrated the production of a focused electron beam suitable for use in open ionizers
- SDL has developed laboratory test facilities for the experimental validation of mass spectrometers and ion optics systems
- Preliminary studies indicate excellent agreement between predicted and observed performance of the VNPS

Supplementary Slides

System Thermal Design

Radiation from sun: 38.2 watts

Assume: -Full cross sectional area -Solar absorptivity = .97

Radiation to space: 47 watts

Assume: -View Factor to space = 1.0 -Emissivity = .97 -Collimator operating at 30°C

Fabrication of Curved Meshes

Manufacturing Method

- Construct solid SST mandrel at SDL
- Send to Precision E-Forming for nickel striking
- Send to Intelligent Micro Patterning for 3D lithography
- Send to Precision E-Forming for 3D electroforming
- Return to SDL for part removal and installation

Emitter Current Saturation Curves

Electron Beam Focusing

26

*Assuming % $T_{actual} = %T_{observed} / 0.7$

Ion Optics Challenges {Solutions}

Potential map

-500 V

0 V

0 V

- Non-ideal grids (field penetration)
 - Micro-lensing → ion trajectory deflections {minimize electric fields, optimize individual meshes}
 - Mean $\alpha \le 2.5^{\circ}$
 - Effective grid potential < applied potential {determine this relationship as a function of electric field for a given grid}
 - Field penetration is localized; effective potential barrier is predictable and "smooth"

More Ion Optics Challenges {Solutions}

- Entrance angle effects
 - Non-uniform low-energy ion filtering {end-cap electrodes}
- Energy effects
 - Non-uniform potential gradients and ion trajectories {spherical energy analyzing grids}

