GRESEARCH & DEVELOPMENT

Miniature High Vacuum Pumps for Analytical Instruments

Robert Kline-Schoder Paul Sorensen

Turbomolecular Pump Advantages

- Supply clean vacuum at high flow rates
- Pump all species, including noble gasses
- Small size and mass
- Potential for low power consumption

Creare Miniature Vacuum Pumps

Miniature Turbomolecular Pump

- 4 L/s pumping speed (air)
- 1x10⁸ compression ratio (N₂)
- 3-12 W power consumption
- 10-12 Torr discharge pressure
- 550 g mass
- 100,000 RPM rotor speed

Extremely Miniaturized Turbo-drag Pump

- 4 L/s pumping speed (air)
- $-1x10^8$ compression ratio (N₂)
- 3-12 W power consumption
- 10-12 Torr discharge pressure
- 130 g mass
- 200,000 RPM rotor speed

Miniaturizing TMPs Is a Challenge

• TMP Tip Speeds

- Must be significant fraction of the mean molecular speed
- For a 2.5 cm pump, speeds > 200,000 rpm are needed
- This can lead to:
 - Reduced bearing life
 - High power consumption
 - High stresses in rotor

Rotor/Stator Clearances

- Must be large enough to accommodate manufacturing tolerances and vibration
- Must be small enough not to degrade pump performance

Design Efforts

- Miniaturization requires optimization of:
 - Motor
 - Turbo-pump rotor and stator
 - Molecular drag stage

• Analytical optimization efforts include:

- Electromagnetic analysis of motor
- Structural analysis of pump rotors
- Bearing life analysis
- Modeling of turbo and drag stage pumping performance at small size scales

Experiments Complement Analysis

- Testing is necessary to complement design efforts and verify analytical models:
 - Motor (bearing and lubricant) life tests
 - Tests of alternative magnet designs for motor
 - Bench tests of individual turbo- and drag-pumping stages
 - Testing of completed pumps

Measurements Verify TMP Blade Model

Copyright © 2007 Creare Incorporated An unpublished work. All rights reserved.

Measurements Verify Drag Pump Model

Structural and Magnetic FEM Results

structural analysis used to optimize blade geometry and material choice

magnetic analysis used to optimize magnet choice and minimize power losses

Exploded View of Final Design

Fabrication Is Challenging

- Maintaining tight tolerances during machining and assembly:
 - Must balance desire to minimize inter-stage leakage using small gaps with need to make pump fabrication practicable

Balancing rotors

- Particularly important at high speeds demanded by miniature TMPs
- Creare has devoted substantial resources to developing a capability to balance at operating speeds

Precision Machining and Assembly

Copyright © 2007 Creare Incorporated An unpublished work. All rights reserved.

Compression Ratio Test Setup

Copyright © 2007 Creare Incorporated An unpublished work. All rights reserved. Discharge

Compression Ratio Test Data: CO₂

Compression Ratio Test Data: He

Flow Test Setup

Flow Test Data: CO₂

Flow Test Data: He

Power Draw Data: CO₂

Power Draw Data: He

Summary

- Designing and building an effective miniature vacuum pump is a highly interdisciplinary effort (mechanical, thermal, fluid, and electrical requirements)
- Analysis crucial for balancing competing requirements
- Experiments are essential to qualify models and verify performance