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« Reduction in size and weight enabling portability (kilograms = grams, m3 9 cm3)
+ Reduction in total sys(em power needed (Watts < milliWatts)

« Potential for i of
« Increasing returns to scale for mass markets

Device Parameterization and Optimization
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Crucial device dimension were parameterized.
Potential field solutions were solved in Maxwell
3D. Solutions were exported into a MATLAB
script to perform multi-pole decomposition. We:
would like to minimize the higher-order terms.
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Quadrupole Mass Filter Physics Higher-Order Harmonics and Non-linear Resonances Significant terms of the multi-pole expansions with housing and dimensions A = B = C = 1000um.
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wafer from step 1. are stable in both x and y. n B

e 3 _ _ 3 - Strip oxide and grow insulating oxide
M.G. Geear, RR.A. Syms, S. Wright, S. Taylor, R.F. Tindall, R.R.A. _ on wafer from step 2.

A.S. Holmes; JMEMS, 2005 Syms; J. Vac. Sci. Tech. B, 2001
Pros: conventional round electrode geometry minimizes higher-order effects 4 _ 4 - Create wafer with one side nitride and .
Cons: requires manual i of ater device one side oxide. Results Presenter Information
Fully Batch Fabricated, Square Electrode Design . "
5 . - . 5 - Bond wafer from step 4 on wafer from The minimum dimension of the electrode should be larger than the dimension of the
Concept step 3. Pattern electrodes. aperture to minimize the higher-order coefficients (B or C should be larger than A).
+ Remove manual assembly to
enable mass production The di " inimi
. . . e distance from the electrodes to housing walls should be equal to minimize the
Afully batch fabricated MEMS 6 - Pattern spacer wafer with DRIE. odd coefficients (D should equal E)
Rectangulr sctoce o I I .
Recl;nglear Tle;:lgx_ﬂesr 7 - Strip nitride from two stacks made in Having a larger top gap (dimension E) will reduce the Cj coefficient slightly while
requived due to fabrication step 5. Strip oxide from one wafer increasing the other coefficients substantially. It is optimal to have a smaller E.
constraints and capabilities made in step 6. Bond pieces together
Questions for complete device. Simulations show that doped silicon (5mQ-cm) driven at 4 MHz behaves as a pure
* Square electrodes will reduce - - metal, clearing concerns on material performance.
the performance but is there a 7 [ sicon [T niride
way to compensate for or Itis believed that operation in the second stability region will provide a means to Keny Cheung
minimize this reduction? the -l introd th | i i
ze this reductior . overcome the non-linear resonances introduced by the square electrode geometry. Microsystems Technology Laboratories
« How will using silicon instead . Oxide D Quartz cheung@nmit.edu

of metal affect the physics?
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