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PART I

Brief overview of ion traps
Simulations of ion traps
Some validating experiments



Brief overview of ion traps.

-RF electric potential of hyperbolic 
and cylindrical ion trap.

Analytical solution of electric potential 
(no endplate spacing end endplate apertures)

Multipole components are:
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1 O. Kornienko, P. T. A. Reilley, W. B. Whitten, and J. M. Ramsey, “Micro Ion Trap Mass Spectrometry” Rapid
Commun. Mass. Spectrom., vol. 13, pp 50-53, Nov. 1999. 



Simulations for ion traps.

Least Square Fit (LSQF)
gives multipoles.

z/z0

v

Simulations in SIMION (D.A. Dahl) 
or fly an electron through CIT in
SIMION to record potential on z-axis.

Optimization
Predictions.

Simulations in ITSIM 
(Purdue, R.G. Cooks).



Proof of concept. Step 1.

Analytical multipoles for CIT z0/r0=0.9.1,2

Multipoles in right column are obtained 
from LSQF from SIMION potential.

Prior work of R.G. Cooks for CIT-0 
with endcap holes and endcap spacing.3

Ring electrode was chosen +1 volt 
endplates  were grounded, thus - sign 
inverted.

1 O. Kornienko, P. T. A. Reilley, W. B. Whitten, and J. M. Ramsey, “Micro Ion Trap Mass Spectrometry”
Rapid Commun. Mass. Spectrom., vol. 13, pp 50-53, Nov. 1999. 

2   W. R. Plass, “ Ph.D. Thesis, “The Dependence of RF ion Trap Mass Spectrometer Performance on Electrode 
Geometry and Collisional Processes” Justus-Liebig-Universität Giessen, Germany, 2001. 

3    G. Wu, R. G. Cooks, and Z. Ouyang, “Geometry optimization for the cylindrical ion trap: field calculations, 
simulations and experiments” Int. J. Mass Spectrom., vol. 241, pp 119-132 (2005).



Some validating experiments

Low Temperature Co-fired Ceramics (LTCC) Die used to shape LTCC into 
a ring electrode.• Soft pliable tapes that turn into hard 

ceramics when fired at 850°C
• Easily shaped into 3-D structures
• Chemically inert 
• Easily made conductive on surface using 

electroless plating.

Step to align endplates.



Some validating experiments



Some validating experiments

1) LTCC CIT
2) Detector (Detech)
3) RF shielding
4) RF electrical feed through connector

1) Cylinder electrode connection
2) Endplate connector grounded



Some validating experiments

Laboratory setup



Proof of concept. Step 2.

LTCC CIT experiments.
Chloroform as analyte.
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Simulations in ITSIM on LTCC CIT 
geometry.
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PART II

Micro CIT mass spectrometers and simulations



Determination of the multipoles of micro CIT electric potential.
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Simulated spectra of CHCl2
+ for micro CIT-MS.
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Ion loss on electrodes when stretching geometry.
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When CIT geometry over stretched ion loss on electrodes occurs.



PART III

MEMS fabrication of micro ion traps



MEMS facilities

The dry processing bay shows the 
PECVD, RIE, DRIE, ebeam evaporator, 
4 tube LPCVD and 2 sputtering systems.

Analytical bay contains the JEOL SEM, 
the Hitachi high resolution SEM and the 
FEI dual beam FIB. 



MEMS fabrication process flow

Silicon Wafer

Process flow

Cylindrical ion trap



MEMS fabrication process flow
Silicon wafer SiO2 and Si3N4

I
II

SiO2 and Si3N4 patterned using 
lithography 

DRIE performed on exposed 
silicon

III
IV

SiO2 etched to open aperture 
holes and to create undercut

Gold sputtered from top and 
bottom

V VI



MEMS fabrication process flow

DRIE performed on exposed 
silicon



MEMS fabrication process flow

Silicon

Silicon Oxide undercut

Silicon nitride membrane

Metal sputtered

Gold sputtered from top 
and bottom



MEMS fabrication process flow

Diced half structures bonded (Au thermal compression bonding, or
conducting epoxy) to obtain CIT arrays.

Z0 (wafer thickness) can be changed to obtain many different sizes of CITs.



MEMS operators

CIT arrays



Results

Capacitance reduction is achieved by 
reducing the conductive area on outer 
surfaces surrounding the apertures.

CIT half structure with endplate aperture 
shown in the bottom of the cylindrical 
electrode.



Results



Packaging method



Discussions

Simulations

•At least 1000 gnu (SIMION) on z-axis necessary for
correct multipole determination.
•Are simulation results for smaller trap sizes valid ?
•When CIT geometry is over stretched ion loss on 
electrodes occurs.

MEMS fabrication

•Process flow to be optimized further.
•Optimization of micro CIT’s should be fast due to 
large range of trap sizes available per processed wafer.
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