

Laser TOF-MS instrumentation for planetary missions

Will Brinckerhoff, Cari Corrigan, Tim Cornish, Scott Ecelberger, Anita Ganesan (JHU/APL); Tim McCoy, Ed Vicenzi (Smithsonian NMNH); Paul Mahaffy (NASA/GSFC)

W. B. Brinckerhoff (JHU/APL) et al. 5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005

Outline

- 1. Some missions and their objectives
- 2. General features of miniature LD-TOF-MS
- 3. LAMS
- 4. DS-TOF
- 5. Tower TOF
- 6. Sample handling and vacuum stuff
- 7. Other LDMS projects
- 8. Acknowledgements

Example Planetary Missions

- Mars rovers and sample returns
- Asteroids
- Comets
- Jovian satellites, Venus, Titan, other moons

Mars

Goals: Understand Mars' history; figure out how similar Mars was to Earth and how it diverged; locate water, organics, other chemicals, resources; find life (or lack)

Conditions: Atmosphere ~ 7 Torr CO₂ and cold!

- Mars Exploration Rovers (MER) operating
- Phoenix Mars Scout (2007)
- Mars Science Laboratory (2009)
- ExoMars
- Astrobiology Field Laboratory
- Mars Sample Return

Asteroids

Goals: Relate asteroids to solar and planetary compositions to understand solar system formation; link meteorite and asteroid classes; search for organics, water, metals; determine internal structure

Conditions: Hard space vacuum; thermal gradients

- NEAR (Eros)
- Hayabusa (Itokawa)
- Dawn (Vesta and Ceres)
- Future landers / sample returns

Comets

Goals: Relate comets to asteroids and KBOs; determine if comets supplied water and pre-biotic organics to Earth; inventory cometary chemical and organic composition; determine internal structure, dynamics

Conditions: Hard vacuum; thermal gradients; vents (!)

- Giotto; Vega1, 2; Sakigake; Suisei (Halley)
- DS-1 (Borelly)
- Stardust (Wild 2)
- Deep Impact (Tempel 1)
- Rosetta (Churyumov-Gerasimenko)
- Future landers / rendezvous / CSSR / CNSR

In Situ Astrobiology at Comets

"Extreme Close-Up" of a comet nucleus?

High-Mass Organics

Refractory organics with m >> 100 Da comprising insoluble organic matter (IOM):

- encode formation processes and timescales (aromatic / aliphatic)
- associate with key ISM organics (amino acids, nucleobases, sugars)
- dominate the organic fraction of comet nuclei (as they do in c-chondrites)

Outer Planetary Satellites

Europa

- Ocean?
- Life?
- Ice chemistry is key goal
- Surface vs subsurface
- Radiation
- Fissure upwellings
- Lander w/drill
- Hard mission!

Titan

- Seas!
- "Pre-biotic" chemistry
- Atmospheric density is high
- Long-term goal: A mobile lander (or aerobot/lander) equipped with a mass spec!
- Expensive but not so difficult to do.

Miniature LD-TOF-MS

- Relatively speaking, laser TOF-MS can be miniaturized without extensive performance degradation compared to laboratory instruments, and instrument complexity is quite low.
- With carefully designed gridless ion optics, a low-noise detector assembly, and a nonlinear "ideal" reflectron, one can achieve surprisingly high mass resolution and low detection limits with straightforward prompt LDI from unprepared samples.

The reflectron corrects TOF dispersion: ions with same m/z but different energies arrive at the detector simultaneously. A nonlinear reflectron focuses LA and LD ions (wide KE band) as well as organic product ions.

LAMS

- 1064 nm Qsw pulses < 10 mJ @ 1 Hz or less
- No sample preparation or contact needed
- Elemental and isotopic analysis
- Elemental LODs to ppmw in bulk phase
- Probe on fine scales (spot size 10-100 μm)
- Complementary to Pyr-GCMS & other methods

BHVO-2 Basalt Standard

W. B. Brinckerhoff (JHU/APL) et al. 5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005

JSC Mars-1 Simulant

W. B. Brinckerhoff (JHU/APL) et al. 5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005

Meteorites

Pentlandite (FeNiS) Grain

Dark Matrix

W. B. Brinckerhoff (JHU/APL) et al. 5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005

W. B. Brinckerhoff (JHU/APL) et al. 5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005

DS-TOF

- 355 or 337 nm pulses $< 10^8 \text{ W cm}^{-2} (1 20 \text{ Hz})$
- Unprepared chips or powders, mounted on insertion probe and held at +5 kV
- Monolithic nonlinear reflectron
- Double-sided detector system
- Organic and elemental analysis capabilities
- Refractory organic LODs in low ppbw range
- Probe on fine scales (spot size <100 μm)

LD-TOF-MS of Allende Matrix

Allende High Mass Organics

LDMS High-Mass Sequence in Allende		
M ⁺	<u>[M+²³Na]</u> ⁺	[M+ ³⁹ K] ⁺
428	451	467
456	479	495
484	507	523
512	535	551
540	563	579
666	689	705
694	717	733
722	745	761
750	773	789
778	801	817

- High-mass (m/z > 300 Da) signal in Allende consistent with previous LDMS and other observations of known macromolecular IOM in C-chondrite acid residues (Becker et al. 1997, Kissin et al. 2003).
- Particular pattern may be due to sequence of sodiated and potassiated parent compounds. Major adduct steps are $\Delta m/z = 28$ Da (dimethyl, C_2H_4 , CH_2N , etc.)
- Possible parent PAH @ 428 Da (octacene or equiv.)
- Prompt LDI PAH ratios do not match REMPI ratios (Plows et al. 2003, Elsila et al., 2004).

Bold = detected m/z; Non-bold = inferred m/z

Tower TOF

- Normal incidence desorption at 266, 355, or 1064 nm with New Wave Tempest
- Lateral postionization at 235 390 nm with doubled Opotek Vibrant
- Unprepared samples mounted on XYZ stage using custom bellows assembly with 13 mm lateral and 25 mm vertical travel
- Instrument and samples are vertical
- Samples are at electrical ground; flight tube biased to negative voltage
- No pre- or post-acceleration grids
- Sensor about 50% size of DS-TOF
- Goal: elemental and organic chemical imaging at resolutions ~ 50 μm
- Still under development

"Flight-Scale" TOF-MS

Sensor is ~ 50% size of DS-TOF prototype, and mounts on 450CF flange. Flight model bundles laser and microscopic imager in common optical system.

TOF-on-a-flange, in

W. B. Brinckerhoff (JHU/APL) et al. 5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005

Sample Handling and Vacuum Stuff

High-resolution in situ chemical imaging

- xyz sample manipulation system developed in collaboration with Honeybee Robotics
- examine location of organics in meteorites

Other Honeybee Robotics Collaborations

- MSL Sample Acquisition/Sample Handling and Processing (SA/SPaH) system
- Precision subsampling systems

Vacuum Issues (Mars)

- **Method 1:** ("brute force") Acquire samples; use vacuum seals/valves; pump out.
- **Method 2**: ("relax requirements") Sample and/or ionize at ambient pressure; draw into dynamically-pumped MS; consider designs that tolerate higher operating pressure.
- Evaluating current generation of Creare mini TMD pumps (to be flown in SAM on MSL)

- A planned ESA Mars rover mission
- Launch: Plan 2011 (2013?)
- Strong exobiology orientation
- Distinguish ExoMars from MSL
 - Exobiology payload
 - 2 m drill
- Instrument payload nominally selected through 2-year process
- Includes combo LD-GC-EI-ITMS

Acknowledgements

Collaborators and Co-workers: G. Managadze, A. Cheng, D. Harpold, H. Niemann, S. Gorevan, D. Yucht, R. Cotter, D. Glavin, L. Becker, D. Stepp, F. Gick, N. Tyris, A. Kritharis

Funding: NASA PIDDP, ASTID, MIDP, ASTEP, and Exobiology programs; JHU/APL internal support

The End

W. B. Brinckerhoff (JHU/APL) et al.

5th Workshop on Harsh Environment Mass Spectrometry, September 22, 2005