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Micro/Meso-Scale Gas Roughing Pumps

*Micro/meso-scale gas sensors are being developed that require
gas pumping.

*Both roughing pumps and high vacuum pumps are required.

*Two possible development strategies: shrink down existing
technology or develop new technology.

*Problems with shrinking down existing technology:
*Moving parts, required manufacturing tolerances, oil.
*Worth considering new pump technology for micro/meso-scales.

*A pump based on thermal transpiration 1s one promising
technology for micro/meso-scale gas roughing pumps:

*No moving parts, no oil or supplementary fluids, scalable,
similar technology applicable to high-pressure gas
compressors, variety of powering options including: radiative,
solar, resistive, waste heat, combustion.



Thermal Transpiration (Thermal Effusion and Creep)

* Rarefied gas phenomena (free-molecular or transitional flow driven by surface temperature gradient)
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Using Thermal Transpiration

Flow in a Knudsen Compressor is the
difference between thermal creep and
pressure driven return flows
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Knudsen Compressor Membrane (Aerogel) Models

*Aerogel Gas Flow and Thermal Transpiration Model
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Knudsen Compressor Flow Model

*Flow properties are dominated by transpiration membrane properties

Gas Conductance C = V @ (Including short tube effects)
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Knudsen Compressor Membrane Thermal Model

*Radiantly heated transpiration membrane.
*Optical energy is absorbed throughout the body.
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*Energy is lost through conduction through the material,
radiation outward and free convection outward.
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*Thermal energy conducted through the porous material is the
sum of the radiation, solid conduction, and gas conduction.
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Knudsen Compressor Membrane Transpiration Model

*Calculate Pressure Difference and Throughput for Membrane
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*Same Analysis Works for the Connector Section, but 1s Neglected
in the Current Work



Single Stage Knudsen Compressor (MEMS)

*Radiant Heating Used to Simplify Manufacturing

*Transpiration Membranes Aligned to Simplify Heating

Pyrex Cover

Silicon Thermal Guard
Aerogel (in red)

(8mm x 10mm x Imm)

Pyrex Bonding Window

Kovar Inlet/Outlet

*Parts Anodically Bonded

*Design Optimizations Can Be Tested With
Conventionally Machined Version




Conventionally Machined Knudsen Compressors

*Much Cheaper to Fabricate Than MEMS Version
*Very Similar Geometry
*O-Ring Seals Allow Multiple Transpiration Membranes to be Tested in Same Device

Single Stage Cascade of 5 Single Stages
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Experimental Cascade Setup
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*Pump filled with pure gas

*Light Source turned on

*Separating valve closed

*Pressure rise vs. time measured




Experimental Process and Analysis
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T, (Torr)

Experimental Results — Single Stage
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Experimental Results — 5 Stage Cascade
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Experimental Results Summary — 1,2,5 Stages
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*For these conditions throughput is relatively constant for various numbers of
stages (dependence is due to manufacturing differences between the different
stages)

*For these conditions the pressure difference scales with the number of stages



Experimental Results — 15 Stage Cascade
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Perforated Aerogel — Low Pressures

*Optimal operation requires Kn ~ 1

*Array (9x11) of 380 um holes drilled through aerogel transpiration membrane.

Silica Aerogel

Transpiration

Membrane (80mg/cc,
8% carbon)

Torr Seal Epoxy.

Aluminum

Thermal Guard 1o |
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*Proof of Concept Shown.

*Testing Conventionally
Drilled Holes to L, =
250um.

*Testing Laser Drilled
Holes for L =250 pm
to 25 pum.
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Future Optimization — Cascade Operation

*Minimize energy consumption per unit throughput and pressure ratio
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Conclusion: Operate with Kn ~ 1 to minimize energy consumption



Optimization — Cascade Operation 11
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System Sizing — Matched to Creare’s Turbopump

*Design Meso-Scale Gas Pumping System Operating on Air from 1E-5 Torr to 1 atm.

High Vacuum

Size ¢ =5cm
Power W
Flow Rate 51/s @ 1E-5 Torr
Backing Pressure 200 mTorr

Lifetime

1 Year Continuous
Operation

Roughing Pump
*Based on Radiantly Driven Knudsen Compressor

*Design Based on Optimization Analysis

*Calculation Made Using Experimentally Validated
Knudsen Compressor Performance Model

P =200mTorr to 1 atm.
N = 1.7E15 mol/sec (5 I/s @ 1E-5 Torr)

* ¢ = 1000mw/cm?, L_= 0.5mm, p = 80mg/cc, 8%
carbon doped

Cascade Characteristics
STAGES = 258
POWER = 300 mw

VOLUME = few cm?

Stated power does not include conversion and
distribution inefficiencies.



Current Status

*Experimentally Demonstrated:
*Cascades of up to 15 stages.

*Cascades operating on N,, He, Ar, Air from P =250 mTorr to
1 atm.

*Radiant Driving at ¢ = 15mw/cm? to 125 mw/cm? (including
direct solar i1llumination).

*Knudsen Compressor Performance Code Validated Over
Experimental Conditions.

*Required MEMS meso-scale manufacturing processes shown.



Required Future Work

Proof of Concept Demonstration

*Continue demonstration of perforated aerogel transpiration
membranes.

*Demonstrate high flux (1000 mw/cm?) operation.
Manufacturing Processes

Stage miniaturization (1cm? - < Imm?)

*Aerogel bonding process

*Aerogel sealing process

*Packaging and feedthroughs

*Make practical comparisons of different candidate heating
techniques



Summary

*Micro/meso-scale Gas Roughing Pumps Based on Thermal
Transpiration Can Efficiently Operate to a Pressure of 10 mTorr.

*Knudsen Compressor Performance Model Has Been Built and
Experimentally Validated and Used in Optimizing Knudsen
Compressor Designs.

*Cascades of Up to 15 Conventionally Machined Stages Have Been
Designed, Built, and Tested.

*Experimental Results for the Gas Throughput, Pressure
Difference, and Temperature Difference Agree with Model Results
to Within 15%.

*Optimized Knudsen Compressor Designs for a Gas Roughing
Pump Appear Viable.

Initial Experimental Results with Etched Aerogel Transpiration
Membrane Agree with Expectations.
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