

Activities

- > Ouantitation of Hazardous Gases in the Field
- ≻Instrument Development
- Method Development
- ► Evaluate Commercial Components

Hazardous Gases of Interest

- •Explosives & Fuels
- -Hydrogen & Oxygen
- -Hydrazines
- -TNT, RDX, HMX

•Toxins

- -Hydrazines
- -Volatile Organic Compounds (VOCs)

Gas Monitoring at KSC

•Shuttle Processing •International Space Station (ISS) Processing •ELV Processing •Environmental Monitoring •Worker Health

Applications for Gas Analysis Systems

•Medical Analysis -Blood Analysis -Liver Analysis •Battlefield Threat -Chemical Weapons -Biological Weapons stry -Land Mine •Contraband Detection -Explosives -Drugs •Geological Prediction -Volcanic Eruption -UV Hazards

What is Mass Spectrometry?

Chemical analysis by transferring a charge to the molecule, separating and detecting

↑Extremely Specific	↓Power Efficiency		
↑Sample Variety	↓Weight		
^{†Qualitative} Why Mass Spectro	metrv? ↓Size		
↑Quantitative	↓Cost		
↑Rapid Response	↓Ruggedness		
↑Large Dynamic Range	↓Operator Training		

Mass Spectrometer System

 Mass Analyzer · Pumping System · Power System Control System • Sample Delivery Calibration System Structural Framework

Parameters of Importance to KSC

•Quar

•Trac

•Rugg

•Repr

•Ease

•Ruggedness

•Reproducibility

titative Accuracy	•System Size
eability	•System Weight
edness	•Power Efficiency
oducibility	•Low Detection Limits
of Operation	•Low MW Compounds – H ₂

Current Strengths at KSC (for small & large systems)

•Certified to Save Lives & •Quantitative Accuracy Equipment •Ouantitative Traceability •Ease of Operation •Autonomous Operation

¹ ASRC Aerospace, ASRC-14, Kennedy Space Center, FL 32899-0087 ² NASA, YA-D2-E2, Kennedy Space Center, FL 32899

The Hazardous Gas Detection Lab

C R. Arkin¹, T. P. Griffin², D. W. Follistein², G. R. Naylor¹, W. D. Haskell¹, F. W. Adams², D. P. Floyd¹, and C. H. Curley¹

• Fixed Sector – 5 Channel • < 30 s Response Time • Accuracy – 10% • LOD < 25 ppm (100 ppm He) • In-House LabVIEW Control

HUMS

• Fixed Sector – 5 Channel • < 30 s Response Time • Accuracy – 10% • LOD < 25 ppm (100 ppm He) • In-House C++ Software

I-HUMS

- Local & Remote Control

HGDS 2000

- Linear Quadrupole • < 30 s Response Time
- Accuracy 10%
- LOD < 25 ppm
- Redundant Systems • Local & Remote Control
- 1800 lbs (820 kg)

• Disassemble to 3 parts

• Linear Ouadrupole • 350 W (steady state)

- 30 s Response Time
- Rugged (25 to -60°C; 760 50 torr)
- 47 kg (105 lb)

AVEMS

• 90,000 cm³

• 6 s Scan Time

- Autonomous • 20 ppm LOD
- Monitor 16 Gases

AVEMS – Urban Air Quality

		Н	ous	ton Ro	efinaries -	Ethylene F	rag
1200 -							
1000 -			_/				
000							
800 -							
600 -							
400 -			+				
200 -							
0 -		^/		Luna	m	mm	~~~
15:	:21	15:50	10	5:19	16:48	17:16	1
	D	tatio		fIL		han D	- 11

Detection of Hydrocarbon Pollutant when flown over refineries at ~5000 ft.

Monitoring of CO₂ and Acetone. AVEMS installed in SUV and driven around San Jose, Costa Rica.

; He

SAMS – The Next Generation

- Linear Quadrupole
- Weight reduced; < 70 lbs
- Size reduced (Backpack Size)
- Helium LOD < 1 ppm
- Reduced Power Demand by 30%
- Improved Autonomy

Opportunities at HGDL

- Undergraduate Internships
 - Chemical, Mechanical, & Electrical Engineering
 - Chemistry, Physics, Computer Science
- Graduate Fellowships
 - Chemical, Mechanical, & Electrical Engineering
- Chemistry, Physics, Computer Science
- Post-doctoral Fellowships
- Mechanical & Electrical Engineering; Chemistry
- Summer Faculty Programs
 - Mechanical Engineering
 - Analytical Instrumentation
- Collaborative & Cooperative Projects
 - Urban & Atmospheric Air Analysis
 - Volcanic Monitoring
 - High-risk (workplace, airport, battlefield) Air Monitoring