4th Harsh Environments Mass Spectrometry Workshop, 9th October 2003

David Groves

Detection Department, Dstl Fort Halstead, Sevenoaks, Kent, UK

DMGroves@dstl.gov.uk, +44 (0) 1959 892448

Introduction

- Explosives detection
 - Why MS for explosive detection
- CITMS
 - pMSED
 - FE
 - GAT 'Minotaur'
- 'TOF'
 - Dynatronics 'Isostach'

Detection of Explosives

Traditional organic explosives

Challenges of Explosive Detection

- Small molecules
- Wide range of vapour pressures
- Readily condense & 'sticky'
 - heated inlets/systems
- Prone to thermal decomposition
- Extensive fragmentation in EI
 - often only 46 m/z ions observed
- High electron affinity
 - negative ionisation gives selectivity

3 October 2003

• nCI, APCI, ASGSI, e monochromators

Compound	V _{sat} @ 25 C pg/I
EGDN	6.4 x 10 ⁸
DMNB	1.6 x 10 ⁷
NG	5.4 x 10 ⁶
DNT	2.2 x 10 ⁶
TNT	8.4 x 10 ⁴
PETN	1.7 x 10 ²
RDX	2.9 x 10 ¹

Cylindrical Ion Traps (CIT)

- Cylindrical Ion traps (CIT)
 - cylindrical ring electrode, planar endcaps
 - easier and cheaper to manufacture and miniaturise
 - lower voltage requirements
 - CITs can easily form arrays

13 October 2003

reduce space charge

C

- increase sensitivity over single CIT
- different size CITs in one array to trap different mass ranges
 - reducing electronics and power requirements

Dstl CIT systems

• 2 'Clone' CIT systems assembled

• GC-CIT

pMSED

13 October 2003

GC-CITMS

- Assembled to provide reproducible & quantifiable sample introduction
- Custom built heated GC interface based on a transfer line for a MS800.

Portable MSED

- In-house designed manifold (15 x 18 cm)
- Entire instrument mounted in 19" rack box

System Description

• CIT ¹ :	$r_0 = 2.5 \text{ mm}$, $z_0 = 2.35$, endcap orifice 2mm \emptyset , sealed with Teflon spacers, heated
 Vacuum system: 	Alcatel ATH31 TMP and KNF 813 diaphragm
Pressure:	6 x 10 ⁻⁴ Torr in trap (estimate), 6 x 10 ⁻⁵ Torr in manifold
 Ionisation source: 	Filament
Detector:	K & M model 7707mh3
 Rf trapping signal: 	approx. 2MHz, in house tuned LC tank circuit
 Control software: 	Teledyne 3DQ
• GCs:	Carlo Erba HRGC 5300 and Fisons AS800

¹ Badman, E.R., Cooks R.G. Anal. Chem. 2000, 72 5079-5086

pMSED

System Performance

- El spectra obtained for:
- Mass range:
- Resolution:
- MS/MS efficiency:
- Dynamic range:

Full range of organic explosives

~ 40 - 550 amu

2 amu

Ca 45 % for n-butylbenzene

10³

13 October 2003

Mass Range

GC TIC chromatograph

2,4 DNT El Spectrum

13 October 2003 © Dstl 2001

MS/MS of nBB

GAT 'Minotaur'

Progression from pMSED

- offers advanced, lower power, more flexible electronics and software in battery powered, field portable equipment
- recently taken delivery of first instrument
- act as prototype platform

13 October 2003

Dstl 2001

dst

EI Spectrum of DMNB

13 October 2003 © Dstl 2001

MS/MS of nBB

Field Emitters

- Developed by Central Microstructures Facility, Rutherford Appleton Laboratory for space instruments
- Arrays of single crystal silicon field emitters with integrated gates

Proceedings 3rd Round Table Micro/Nano Technologies for Space ESTEC, 15-19 May 2000

Specification

- Dimensions: 2.2 µm high, 10 nm tip radius, 7 µm pitch
- Extraction voltage: 50 100 V, breakdown > 500 V
- Array: 25 x 35 emitters per array, 20 arrays, 17500 emitters per chip
- Emission current: 100 µA, stability ±1% using constant current source electronics
- Pulse mode:

extraction gate switching, 1-2 ms pulse widths

RAL Field Emitters

Emission Current Measurement

Current recorded on PC.

Chips must be run-in before use.

Graph shows change in emission characteristic during run-in period from unstable early emission to stable, high current emission.

Mass Spectrum of FC43

Characterisation

Underway

- 3 issues to be investigated
 - Lifetimes
 - application specific
 - Poisoning by organic compounds
 - spectra of FC43 obtained
 - Pressure tolerance
 - spectra collected at 10⁻⁵ Torr

Dynatronics 'Isostach' MS

- Patented¹ novel MS in which ions produced have same velocity (rather than same energy as in TOF)
 - different ions have different energy, discriminated by energy analyser
 - offers 'TOF' like performance in compact instrument

'Isostach' MS Layout

Theory

Dstl 2001

Results

• First MS obtained for Ar and Xe (with broad energy spread EIS)

Energy selection electrode voltage, V

Summary

- Assembled two 'clone' CIT systems
- Characterised CITMS for explosive analysis
 - obtained first EI CIT spectra of explosives
 - quantified performance for explosive analysis
 - demonstrated MS/MS
- Explored benefits/limitations of CITs

Acknowledgements

- This work was funded by the UK MoD
- Dstl EDG team

- Purdue University
 - Graham Cooks Research Group, especially
 - Andrew Guymon
 - Chris Doerge
- Griffin Analytical Technologies
 - Garth Patterson
 - Dennis Barker
 - Mitch Wells

Acknowledgements

- RAL
 - Barry Kent

- Dynatronics
 - Brian Webb
 - Don Young
 - Brian Holden

