Aircraft-based Volcanic Emissions Mass Spectrometer (AVEMS)

C Richard Arkin, PhD ASRC Aerospace Kennedy Space Center, FL

- KSC Goals
- Project Goals
- AVEMS System
- System Characteristics
- Houston Tests
- CARTA Mission 2003
- Future Work

Gas Monitoring at KSC

- Shuttle Processing
- International Space Station (ISS) Processing
- ELV Processing
- Environmental Monitoring
- Worker Health

Hazardous Gases

- Explosives & Fuels
 - Hydrogen & Oxygen
 - Hydrazines
 - TNT, RDX, HMX
- Toxins
 - Hydrazines, N₂O₄,
 - Volatile Organic Compounds (VOCs)

Applications for Gas Analysis Systems — "Tactical to Practical"

- Air Quality
 - Environmental
 - Workplace
- Leak Detection
 - CRT Industry
 - Refrigeration Industry
 - Automotive Industry
 - Food Industry
- Process Monitoring
 - Semiconductor
 - Petrochemical
 - Cross-Country Pipeline

- Medical Analysis
 - Blood Analysis
 - Liver Analysis
- Battlefield Threat
 - Chemical Weapons
 - Biological Weapons
 - Land Mine
- Contraband Detection
 - Explosives
 - Drugs
- Geological Prediction
 - Volcanic Eruption
 - UV Hazards

Why Mass Spectrometry?

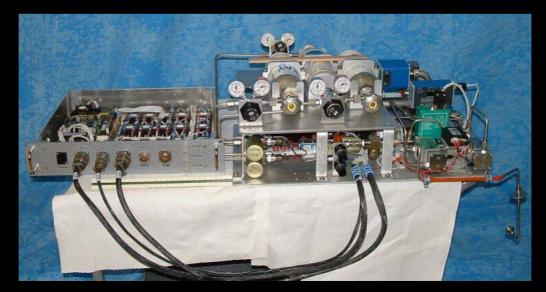
- ↑ Extremely Specific
- ↑ Sample Variety
- ↑ Qualitative
- ↑ Quantitative
- ↑ Rapid Response
- ↑ Large Dynamic Range

↓ Size

- ↓ Weight
- ↓ Cost
- ↓ Power
- ↓ Ruggedness
- ↓ Operator Training

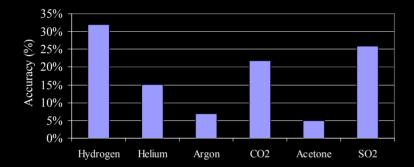
- Success & Deficiency Areas in Development & Operation
- Monitor Volcanic Gas Emissions (He, CO₂, SO₂, H₂S,...)
- Correlate to Volcanic Cycles

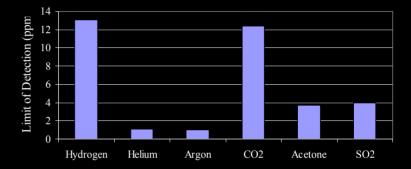
Mass Spectrometer System

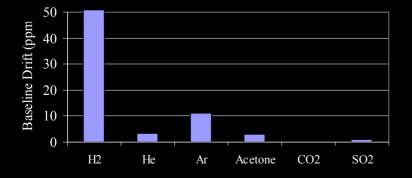

- Mass Spectrometer
- Pumping System
- Power System
- Control System
- Sample Delivery
- Calibration System
- Structural Framework

Monitoring Volcanic Emissions

Aircraft Monitoring

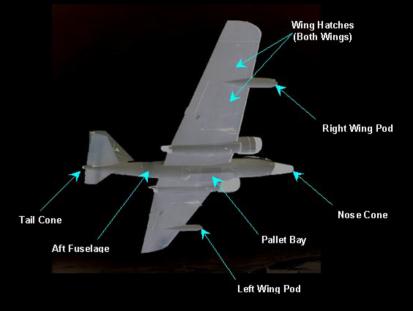

- Portable: 92,400 cm³ (5,640 in³); 45 kg (104 lb)
- Power Efficient: 350 W steady state
- Rugged: 25 to -60°C; 760 to 50 torr
- Autonomous Operation




AVEMS Automated Procedure

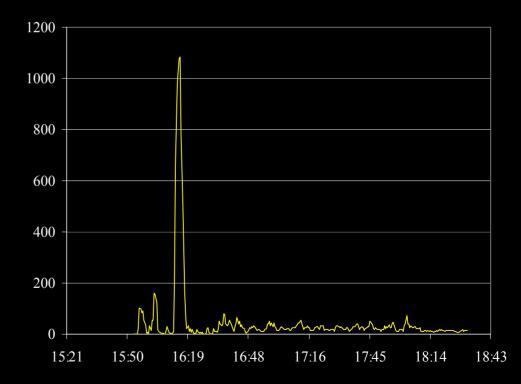
- 1. Turn On
- 2. Pump Down ~5 min
- 3. Stabilize ~5 min
- 4. Calibrate ~15 min
- 5. Measure Sample
- 6. Check for Pressure Change
- 7. If ΔP , then 4, else 5

Figures of Merit



Sampling from WB-57

- Forward Transition
- 30 sec/scan
- 2.5 mile at 300 mile/hr
- 1.7 mile at 200 mile/hr


Sample Inlet on WB-57

Tests in Houston- Petroleum Plants

- 3 Successful Tests
- Water Problems
- Methyl ion
- 5000 ft.

Houston Refinaries - CH₃⁺

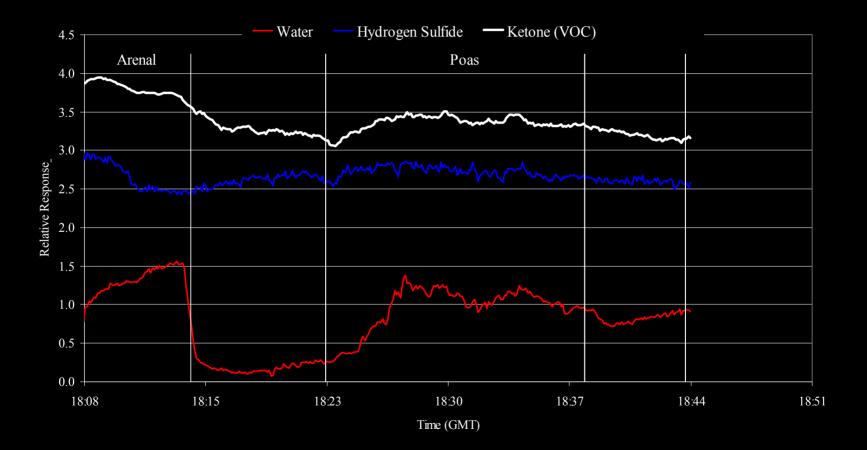
CARTA 2003 Mission

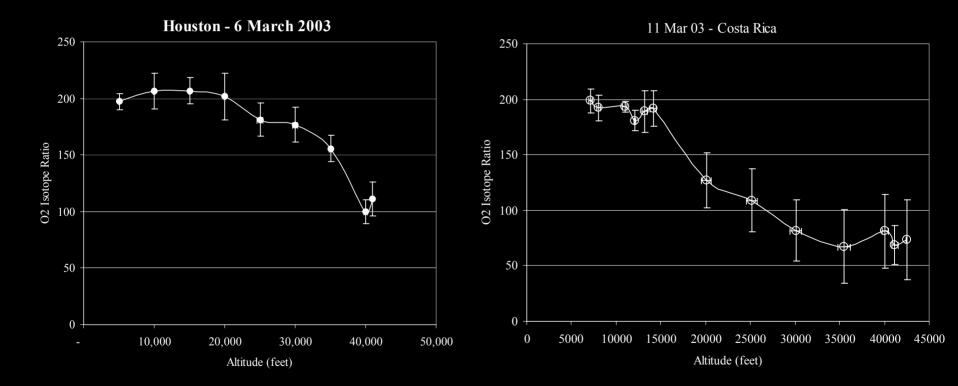
Costa Rica Airborne Research and Technology Applications

- 3 Instruments Involved
 - Mass Spectrometer (Air Analysis)
 - Hyper-spectral Analyzer (Ground Analysis)
 - Cameras (Ground Analysis)
- AVEMS
 - Low altitude, Above volcanoes
- Other Instruments
 - High altitude, Entire Country

Monitoring Volcanic Emissions

• Current Methods

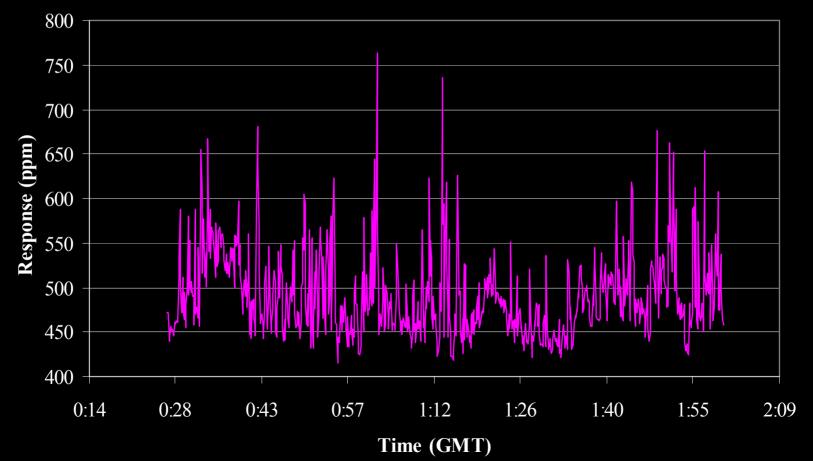

- Large
- Removed from Sample Location
- High PowerRequirements
- Needs improved Reliability
- GC-MS, NOx, O₃


WB-57 in Costa Rica

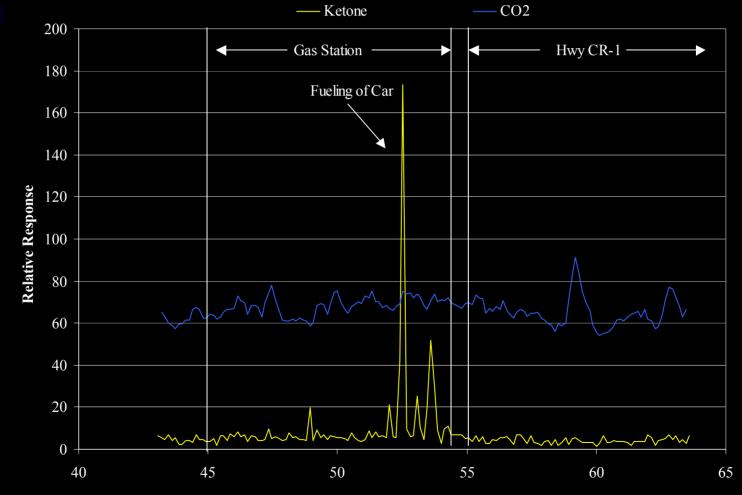
Flight Results

Flight Results – Isotope Ratios

Ground Tests Around City


- Operate in Other Vehicles
 - Operate on Automobile Power
 - Take to Remote Location Via Automobile/Human
- Mounted System in Car
- Drove Around Metropolitan Area
 - San Jose
 - Highway CR-1 (Main Highway)
 - Alajuela
- Able to Monitor Changes for each area

AVEMS in Back of 4x4



Driving Results

CO2 (ppm)

Gas Station Results

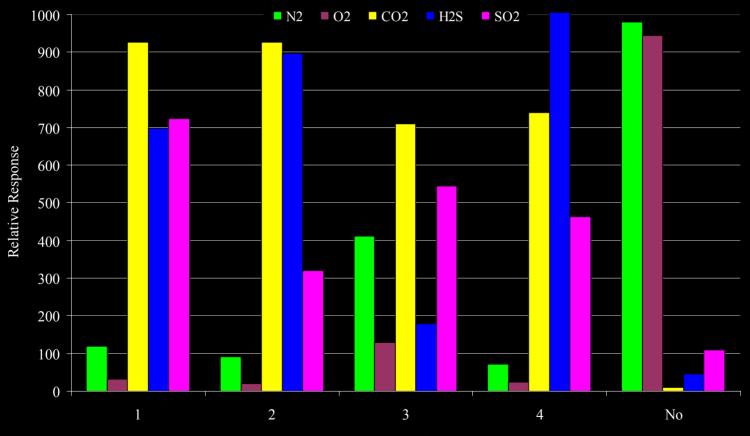
Elapsed Time (min)

Ground Tests at Volcano

- Background
 - Central Costa Rica (10.03 °N, 83.77 °W)
 - Summit Elevation 3340 m (10,960 ft)
- Transported AVEMS to Turrialba
 - In back of 4x4
 - By hand
- Collected Fumaroles Data
 - On-site monitor with AVEMS
 - Sample bottle for later analysis

Hand Transport to Field

- Intimate Understanding of Miniaturization
 - 105 lbs, 2 mile trail, 2 car batteries, laptop
 - Diagnostic for locating lost muscle groups


AVEMS at Turrialba Volcano

Collecting Sample at Turrialba

Turrialba Data

Fumarole

Future – CARTA II

- Atmospheric Analysis
 - Pollutants (CO₂, VOC, …)
 - Isotope Ratios (O_2 , Ar, ...)
- Volcanic Analysis
 - Emissions (SO₂, H₂S,...)

- Upgrades to AVEMS
 - Standby Mode
 - Better H₂O Tolerance
 - Use less calibrant gas
 - Increased altitude
 - Improved data analysis

Future Work

- Reduce Size and Weight of System
- Improve MS and SDS to Increase Performance
- Larger Range of *In-Situ* Applications
 - Municipal & Industrial Air Quality
 - Municipal & Industrial Water Quality
 - Biochemical Warning
- Small, Rugged System for Shuttle/ISS/ELV

• Pluses

- + Detected Components Over/In Volcanoes
- + Rugged Survived Trip to Turrialba, around San Jose, and in the WB-57
- + System Worked as Designed
- + Identified Items Specific to Field Deployment

• Minuses

- Detection Limits too High
- Update Rate too Slow
- Heavy for Hand Carrying

Acknowledgements

- NASA
 - Tim Griffin
 - Ric Adams
 - Duke Follistein
 - Dean Lewis
 - Eric Thaxton

- ASRC
 - Guy Naylor
 - Bill Haskell
 - Charles Curley
 - David Floyd
 - Mike Blalock

- University of Costa Rica
 - J. Andres Diaz