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Abstract

Mobility spectra for organic compounds at temperatures of ~50°C and 175-250°C were categc
using back-propagation neural networks with the successful classification even of chemicals not f

Somehow sufficient spectral detail was present for mobility spectra to
be classify by Neural Nets into chemical families (>90%)




WE WERE DRAWN BY NEURAL NETWORK
EXPERIMENTS TO SMALL IONS AT LOW ABUNDANCE

Normal Axes

Semi-log Plot

Were these ions “real” or only spectral artefacts?
How and where were they formed?




ADD REACTIVE STAGE AFTER SECOND ION
SHUTTER
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H. Shokri, M. Vuki, B.D. Gardner, H-C. Niu, U. Chiluwal, B.K. Gurung, D.B. Emery, G.A. Eiceman Reactive
Tandem lon Mobility Spectrometry with Electric Field Fragmentation of Alcohols at Ambient Pressure,
Analytical Chemistry 2019, 91(9), 6281-6287.

U. Chiluwal, G. Lee, Y. Rajapakse, T. Willy, S. Lukow, H. Schmidt, and G.A. Eiceman, Tandem lon Mobility
Spectrometry at Ambient Pressure and Field Fragmentation of Mobility Selected lons of Explosives and
Interferences, Analyst 2019,144, 2052-2061

lons undergo decomposition in symmetric waveforms
2 to 4 MHz with fields of 10 kV to 30 kV/cm (100 to ~250 Td)



FIELD INDUCED FRAGMENTATION (FIF) SPECTRA AND
TANDEM MOBILITY METHODS AT AMBIENT PRESS.
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Concept of FIF parallels Collision Induced Dissociation in Tandem MS



FUTURE DIRECTIONS (2019)

LOW COST “Tandem MS” ADVANCES IN SCIENCE & TECH & PRACTICE

What have we learned since 20197



STUDIES ON ION FRAGMENTATION (2016-2021)
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FIF SPECTA FROM MH*(H,0),, OF n-ALCOHOLS
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Patterns can be seen and ions mass-analysed to establish understandings of
fragmentation. Seen decades earlier in APl or Cl MS (Harrison).
Spectra obtained with 15 mm drift regions, 10 ppm moisture, in air, 660 torr.
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lon energy (heat or field) matters. Even low E/N aids classification rates.
How to explain the Nnet performance? Fragmention?



UNFAMILIAR COMPOUNDS
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Not all chemical classes are equal with Unfamiliar Compounds



FRAGMENTATION GOES WITH E/N “LINEARLY”

dialkyl ether (C_H,,.,),0 n-alkanes (C.H,,,-) n-alkyl acetates (C H,,,,0,CH;)
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Fragmentation should go as E2? over large range..... We are accessing a very
narrow range of energies




ION ENERGIES IN “STRONG” ELECTRIC
FIELDS

Lab Frame of Reference
KE . = 3/2k,T + 1/2m

Thermal Field Energy Neutrals collisions

2 2
on V2 + 1/2myv,

Center of Mass of Colliding System

. My - 3 '- 3
KEem = ————— (REit:m - ?I\BT) + ?ABT

Mion + iy

Andrew Ellis and Christopher Mayhew, Proton Transfer Mass Spectrometry,
2014, John Wiley and Son, pp72-73

D.J.Douglas, Applications of Collision Dynamics in Quadrupole Mass Spectrometry,
JASMS 1998, 9 (2), 101-113



FRAGMENTATION CAN BE EXTENSIVE
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We wish to reach 250 Td (ca. 30kV/cm) without arcs and sparks
new structures or principles needed.
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US WITH FIF SPECTRA?

Acetates

propyl acetate
Isopropyl acetate
butyl acetate
isobutyl acetate
sec-butyl acetate
pentyl acetate
isopentyl acetate
hexyl acetate
heptyl acetate
octyl acetate
nonyl acetate
AVERAGE

1.000
1.000
1.000
0.000
1.000
0.900
0.632
0.000
0.000
0.000
0.000
0.503

Alkanes
2-methyl-1-heptane
n=hexane
n-heptane
n-octane

n-nonane

n-decane
n-undecang
AVERAGE

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.909
0.000
0.000
0.850
0.000
0.000
0.000
0.251

Alcohols
methyl-1-propanol
propanol

Z2=-propanol

l-butamol

Z-butanol

l-pentanol

AVERACGE

1.000
0.129
0.120

1.000

1.000
0.000
0.542

Ethers

diethyl ether
dipropyl ether
diisopropyl ether
dibutyl ether
dipentyl ether
dihexyl ether
AVERACE

1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000

Aldehydes
butanal
pentanal
hexanal
heptanal
octanal
nonanal

0,000
0,000
0.727
0.238
0.571
0.000

-

Ketones
methylisobuty Iketone
butanone
pentanone
hexanone
heptanone
oCtanone
nonanone
decanone
pinacolone
AVERAGE

P

Fd  Dod Pod [od Pod  Dd

1.000
0.971
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.929
0.325

Some numbers are very impressive.




REASONABLE EXPLANATIONS FOR NNET
CLASSIFICATIONS CAN BE FOUND IN FRAGMENT IONS
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Fragmentations explored decades ago in mass spectrometry appear to apply
to FIF processes in air at ambient pressure.




P.1 Aldehydes
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Patterns in IMS spectra seen in 2000 by Erkin Nazarov (and lost to time) re-
established.



FRAGMENTATION ENTHALPY OR OTHER?
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IONS IN RF “DANCE” AMONG THE WIRES

(>80% transmission efficiency)
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Wire structures pretty acceptable for tandem IMS methods



REACTIVE STAGE TANDEM DMS

+1f2 OV ey —————
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Simple technology new style of “fragmentor”



TANDEM DMS WITH REACTIVE STAGE

P.E. Fowler, J.Z. Pilgrim, G. Lee, and G.A. Eiceman, Field Induced Fragmentation
Spectra from a Reactive Stage-Tandem Differential Mobility Spectrometry, Analyst,
2020,145, 5314-5324.



n-ALDEHYDES IN GC-TANDEM DMS
(DMS1 ISOLATE-REACTIVE STAGE ACTIVE-DMS2 SCAN)
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Planar fragmenter shows first and second levels of fragmentation of
aldehydes (recall low level of fragmentation with wire grid design

—



n-ALDEHYDES WITH REACTIVE STAGE TANDEM DMS
(COMMON IONS IN FIF SPECTRA)
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Another view of fragment ions within aldehydes



n-ALCOHOLS WITH REACTIVE STAGE TANDEM DMS
(COMMON IONS IN FIF SPECTRA)
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Another view of fragment ions within alcohols



CLASS CHARACTERISTIC FRAGMENT IONS IN FIF
SPECTRA FROM TANDEM DMS
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Fragment ions seen in FIF spectra are common within a chemical family and
differ between chemical families. How widely will we find this?



RATES OF CLASSIFICATION FOR . peohols
FAMILIAR COMPOUNDS , Ketones
®  Aldehydes
Mobility Isolated Protonated Monomer Field Induced Fragment Spectra
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Radar Charts a new tool to probe classification and mis-classification
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TECHNOLOGY: TRL 1/2 TO 3/4
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DUAL STAGE ION FILTERING BY a(E/N) ONLY

Menlyadiev, M.; Eiceman, G.A. Tandem Differential Mobility Spectrometry in
Purified Air for High Speed Vapor Detection, Analyt. Chem. 2014, 86 (5): 2395-402
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FLAT ALPHA FUNCTIONS WITH DMS:
K (E/N) = K, [1+ a(E/N)? +...]
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ALPHA MODIFICATION IN TANDEM DMS

Preserve ionization chemistry with modification of alpha functions

Neutral vapor

ions

DMS 2
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Schneider, Covey, Nazarov, DMS-MS separations with 40

different. transport gas modifiers, International Journal
for lon Mobility Spectrometry 2013, 16(3), 207-216

Kafle, et al., Understanding gas phase modifier interactions in rapid analysis by Differential Mobility-Tandem Mass

Spectrometry, J Am Soc. Mass Spectrom. 2014 Jul; 25(7): 1098—-1113.
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Conclusions as Sept 2022

* Pushing E/N above 150 Td was sufficient to fragment aldehydes
and some ethers...... ions for 2-ketones still un-fragmentated.

- Transition state and E_ apparently where control exists and where
understanding is needed. Computational modeling
underway....... non-trival.

« Radar charts provide tools to look at overall performance and give
insights into mis-

 Fragment ions ap
(and some memo

Las Cruces, &%
New Mexico
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