

Field deployable MS the Tofwerk Experience

Marc Gonin & Benoit Plet

contents

History

Atmospheric Chemistry

The Future

Conclusions

HEMS 1999

History

financed by NASA

Atmospheric Chemistry

Introduction

- Complex mixture
 - Anthropogenic
 - Biogenic
- Intricated processes
 - Local mixture
 - Transport
 - Multiphase processes
 - Altitude
 - Photochemistry conditions
- Bring instrument anywhere

Credit: Phillipe Rekacewicz – Strategic Plan for the U.S. Climate Change Science Program, Public Domain

Atmospheric Chemistry

Introduction

Laboratory

Operational Challenges

Instrumentation

- Transported to remote places
 - Compact size
 - Survive to "exotic" shipment
 - Reasonable weight

Operational Challenges

Instrumentation

Operational challenges

Instrumentation

- Transported to remote places
- Work in "unspecified" environments
 - Pressure changes
 - Limited/unstable power
 - Survive power failures

Credits: Federico Bianchi, University of Helsinki

Operational challenges

Instrumentation

- Transported to remote places
- Work in "unspecified" environments
- "Unbox your MS"
 - Fit customized ion-source / inlet
 - Comply with aircraft regulation
 - Survive to turbulent flights
 - Vibrations / Shocks
 - Heat

Credits: Siegfried Schobesberger , Uni. Washington

MS background is our measurement

APCI-TOF platform

- Top performance
- Compact
- Customizable
- Robust
- Scalable
- Upgradable (IMS)
- Unconditional support
- Open data format

Instrument in airplane

Instrumentation

by Jonathan Duplissy

Move your MS to the field!

Boundary Layer

SOAS Campaign 2013

- Southern Oxidant and Aerosol Study
- ? Fate of biogenic compounds in anthropogenically-influenced environments?
- HO_x/NO_x/O₃/organics/aerosol distributions, fluxes, sources, sinks
- Focus on formation of Secondary Organic Aerosol (SOA)

Boundary layer

Source: SOAS white paper

SOAS 2013: Instrumentation

Boundary layer

- First deployment of a (NO₃-)-IMS-TOF
- Detection of highly oxidized species likely to form particles
- Detect isomeric variants
- Understanding reactions pathways
- Characterizing partitioning behavior

IMS-TOF in situ at SOAS 2013 Centreville Alabama field site, USA

Credits: Jordan Krechmer

SOAS 2013: Results

Boundary layer

Benefits of IMS-TOF

- Increase separation
- Compensate for missing GC
- Compensate for limited mass resolution
- New information not available from MS alone

Krechmer, J. E. et al, Atmos. Meas. Tech., 9, 3245-3262, 2016

SOAS 2013: Results

Boundary layer

Benefits of IMS-TOF

- Compensate for limited resolution
- New information not available from MS alone
- Time-resolved measurements of gasphase isomers

Krechmer, J. E. et al, Atmos. Meas. Tech., 9, 3245-3262, 2016

SOAS 2013: Results

Benefits of IMS -TOF

- Compensate for limited resolution
- New information not available from MS alone
- Time -resolved measurements of gas phase isomers
- Chemical classes information / transformation of organics

Boundary layer

Zhang, X. et al., Atmos. Chem. Phys., 16, 12945-12959, 2016

Move your MS to the sky!

Troposphere

- Studying the emissions and fate of pollutants during winter across the eastern U.S.
- Photochemistry slow
 - NO₃, N₂O₅
- Chemical transformations
 - At night
 - At sunrise
 - Over polluted area
 - Over sea

Source: Felipe Lopez -Hilfiker

WINTER 2015: Instrumentation

Troposphere

Onboard NSF/NCAR C-130 research aircraft

- APCI-TOFMS (iodide) CINO2, N2O5, HNO3, ...
- APCI-TOFMS (acetate) HONO, HCI, HNO3, ...
- One airplane = One rack

TOF-CIMS instrument in flight configuration

Source: Felipe Lopez -Hilfiker

WINTER 2015: Results

- Radicals sources evolution at sunrise
- Stagnant conditions
- Pollution plume from New Jersey that had aged overnight

Felipe D. Lopez-Hilfiker et al, in preparation

Move your MS even higher

Stratosohere

StratoClim 2017

Stratosphere

"Stratospheric and upper tropospheric processes for better climate predictions"

- SO₂ (CO₃- mode)
- bromine species (I- mode)

M55 Geophysica: High Altitude Aircraft

Source: Fred Stroh from IEK -7, fz -juelich.de

StratoClim 2017: FunMass

Stratosphere

- Custom multi chemistry ion source
 - H2SO4, SO2 ➤ stratospheric aerosol
 - HCI, HNO3
- Flight unattended ➤ autonomous
- Extreme operating environment:
 - <-80°C
 - No pressurized compartments (50 hPa)
- Extreme mechanical and EMC specs
 - DO 160D standard, 9g loads
 - Weight, Size and Power Constraints
- Extreme "standby" conditions:
 - > +40°C
 - High humidity (India)

Source: Fred Stroh, IEK -7, fz-juelich.de

FunMass: Development

Stratosphere

FunMass: Stress Test

Stratosphere

- Reconfigured instrument to fit climate chamber
- Full flight simulations (4-5h) with realistic T-p variations
- Stable under all flight conditions once insulation and heating/cooling measures taken.

Weiss Climate Simulation Chamber

Source : Fred Stroh, IEK -7, Forschungszentrum Jülich GmbH

Vocus Model 2R

Vocus specs

Medium Pressure Chemical Ionization: MPCI

- Height = 1480 mm
- Width = 480 mm
- Depth = 615 mm
- Volume = 0.45 m^3
- Mass = 160 kg
- Power < 1000 W
- Line Voltage = 100-260 VAC
- Line Frequency = 50/60 Hz
- Altitude = Tibet
- Temperature < 40 C

Vocus Specs

3 times the standard deviation of a background measurement assuming the benzene sensitivity for the whole mass spectrum

Background limited at low m/Q – counting statistics dominates at higher mass

Mass Resolution

Vocus Specs

- Vocus 2R allows for
- > isobar separation
- > quantitative analysis
- > complex samples

quantitative results require separation high mass resolution

Sensitivity

- Hz sampling of ambient air
- Side-by-side comparison with the
 - 1. NOAA PTR-TOF (red)
 - 2. Vocus 2R (black)
- The NOAA instrument is a state-of-the-art PTR-TOF
- The sensitivity of Vocus yields better precision faster, especially at low concentrations.

Vocus Specs

Data courtesy of Carsten Warneke, Joost DeGouw, Abby

Dynamic Range

Vocus Specs

- human breath measured at 3 Hz before and after ingestion of a Ricola herbal drop
- concentrations span more than 6 orders of magnitude

Confirmation with accurate mass

Fentanyl exact mass: 337.22744 Da

Fentanyl measured mass: 337.22650 Da

mass accuracy: 0.94 mDa

relative mass accuracy: 2.8 ppm

→ mass accuracy confirms the detection of protonated fentanyl

Confirmation with isotope pattern

- synthetic spectrum of Fentanyl showing isotopes
 measurement of Fentanyl showing the same isotopes
- → isotopic distribution confirms Fentanyl

Fentanyl confirmation using CID

 By changing the collisional energy after the Vocus reactor, collisional induced dissociation can be used to confirm Fentanyl by formation of known fragments

Fentanyl confirmation using CID

- The fragmentation patterns are the same as observed by previous studies using gas collision cells
- → **fragmentation patterns** confirms fentanyl

Interference from clean glass

- Approximately 10 ng Fentanyl desorbed from a clean glass surface
- Very few isobaric interferences
- High resolution not required for pure detection

Interferences from filter paper

- 10 ng Fentanyl in water on a 3 cm² piece of filter paper straight out of a box (uncleaned)
- Isobaric interferences at both the protonated mass and the isotope which result in interferences
- High resolution required for robust separation of Fentanyl

Interference from plastic bag

- 10 ng of fentanyl in water on a 3 cm² piece of filter paper which was rubbed on a plastic bag to add additional interferences (simulating material which is swabbed from a plastic bag).
- additional interferences are at different nominal masses (338 Th) in the region of interest.
- high resolution required

Summary

Field measurements are hard:

- Uncontrolled conditions
- Lot of background
- No sample prep
- Sometimes no expert users

→ You may require good performance

Find the right compromise

Acknowledgements

Jordan Krechmer

Manjula Canagaratna

Fred Stroh

Talat Khattatov

Yun Li

Felipe Lopez -Hilfiker

Joel Thornton

John T. Jayne

Douglas R. Worsnop

- Institute of Energy and Climate Research – Stratosphere (IEK-7), Research Centre Jülich GmbH, Jülich, NRW, Germany
- Center for Aerosol and Cloud Chemistry, Aerodyne Research, Billerica, MA, United States
- University of Washington, Seattle, WA, United States
- Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, United States
- Department of Physics, University of Helsinki, Finland
- TOFWERK, Switzerland