Development of a robust Fourier-Transform ion trap for semiconductor manufacturing

Valerie Derpmann

- 1 Semiconductor manufacturing processes
- 2 Introduction to iTrap Technology
- 3 Application of iTrap
- 4 Etch Process Control

- 1 Introduction to semiconductor manufacturing processes
- 2 Introduction to iTrap Technology
- 3 Application of iTrap
- 4 Etch Process Control

Introduction to semiconductor manufacturing processes

1947 The First Transistor from Bell Labs

- Reduction of structure sizes
- Reduction in prices
- Increase of reliability = less defects

300 mm processed Wafer

Million transistors on every die

General process categories

- Deposition (e.g. cvd)
- Removal (etch)
- Patterning (lithography)

Process optimization:

- Time per process step
- More exact layer thicknesses and etching results
- Smaller lithography wavelength for smaller patterns

Photo courtesy of Lucent Technologies Bell Labs Innovations https://commons.wikimedia.org/wiki/File:12-inch_silicon_wafer.jpg

Wafer processing

Semiconductor processes: Dry Etch

Pressure inside the etch chamber: 0.1-100 Pa

Etching result:

Endpoint detection necessary, to prevent over-etching and reduce process time

For Example:

$$4F + SiO_2 \rightarrow SiF_4 + O_2$$

Film	Process gasses	Annotation
SiO ₂ , Si ₃ N ₄	CF ₄ , O ₂	F etches Si, O ₂ removes carbon
	CHF ₃ , O ₂	CHF ₃ acts as a polymere, increases selectivity agains Si
	CH ₃ F	enhanced selectivity of Si ₂ N ₄ against SiO ₂
	C ₃ F ₈	increased etch rate compared to CF ₄
Poly-Si	BCl ₃ , Cl ₂ SiCl ₄ , Cl ₂ / HCl, O ₂ / SiCl ₄ , HCl	no contamination by carbon
	HBr / Cl ₂ / O ₂	enhanced selectivity against resist and SiO ₂
	SF ₆	high etch rate, fair selectivity against SiO ₂
	NF ₃	high etch rate, isotropic
mono crystalline Si	HBr, NF ₃ , O ₂ / CF ₃ Br	higher selectivity against SiO ₂
	BCl ₃ , Cl ₂ / HBr, NF ₃	

https://www.halbleiter.org/en/dryetching/etchprocesses/

Semiconductor processes: MOVPE

- Metal organic vapor phase epitaxy
- Growth of crystalline layers of III/V-semiconductors, e.g. GaAs
- Organometallic precursors, like trimethyl gallium, tertiarbutyl arsine
- Temperature inside the reactor is up to 1000°C
- Pressure approx. 50 mbar

https://de.wikipedia.org/wiki/Datei:MOVPE_surface_processes.svg https://www.rit.edu/kgcoe/microsystems/highlight/movpe-equipment-changes-everything-semiconductor-processing

- 1 Semiconductor manufacturing processes
- 2 Introduction to iTrap Technology
- 3 Application of iTrap
- 4 Etch Process Control

iTrap Working Principle

- El (70 eV) is used to generate ions
- lons are trapped in 3D quadrupole by HF electric field
- Ion oscillation frequency directly relates to m/z ratio
- Metal electrodes detect superposition of electrical signals of all ions
- FFT of electrical signal yields full mass spectrum in a single shot

- All ion species in a spectrum can be measured simultaneously without scanning
- Ion species can be selectively accumulated and measured
- The same ion population can be repeatedly measured time after time to improve S/N ratio
- Measurement speed up to 2 Hz

Experimental Setup and detection principle

Robustness ensured by a reduced gas load and inert surfaces

- Pulsed gas inlet helps to reduce the gas load inside the trap

- All surfaces gold coated or made from Al2O3 ceramics
 → Corrosion is minizmized
- FFT instrument → No detector

Time resolved measurement analyte response

Low gas load, but high pressure during ionization

Pressure inside the iTrap: DMSC Simulation

Selective ion trapping is used to increase dynamic range

Exemplary Use Case

 Detection of BTX spectrum in N2 carrier matrix (N2 with 50 ppb Benzene/Toluene/Xylene)

SWIFT* at work: Lower detection limit can be significantly enhanced

Overview of full mass range at almost real time.

Etch precursor BCl₂ dominates the spectrum and eats up dynamic range of the analyzer

SWIFT removes dominant species from the trap.

Species not visible before like BF₂, Cl₂, SiCl₃ are observed.

Carl Zeiss SMT GmbH, Valerie Derpmann

mass ratio [m/z]

^{*}Stored Waveform Inverse Fourier Transform

- 1 Semiconductor manufacturing processes
- 2 Introduction to iTrap Technology
- 3 Application of iTrap
- 4 Etch Process Control

iTrap Applications

Process Chamber Epi, CVD, Etch

In-/Outgoing Wafer

Chamber Health

- Evaluate effectiveness of pre/post cleans in eliminating contaminant species e.g. metal halides
- Detect Wafer to wafer variation and within lot variation
- Identify mismatched chambers and do root cause analysis faster
- Monitor byproducts to predict chamber lifetime ahead of inline signals
- Proactively guard against atmospheric leaks/changes in incoming gas purity and composition

Process Control

- End Point Critical Etch Processes based on mass spectra changes
- Evaluate etch byproducts to optimize chemistry selection e.g. fluorocarbon gas selection during oxide etch, such as C4F8 vs C4F6
- Watch real time evolution of etched species during testing to targeting critical threshold parameters e.g. temperature, RF Power
- Assess size of process window by response of mass spectra to parameter variation

Wafer Health

- Measure post process outgassing to target cleans/minimize queue time vulnerabilities
- Track long term changes in etch byproducts to monitor incoming material composition / depth uniformity

Process Yield / Uptime / Tool Matching

Investigation of TBAs decomposition in MOVPE reactor system

Mass spectrum of TBAs at 30 °C with a TBAs partial pressure of 7.5E-3 mbar

m/z 134 = TBAs m/z 57 = tBu group

Reactor pressure: 50 mbar

Partial pressure TBAs: 1E-2 mbar

- no thermal decomposition
- just TBAs and tBu radicals due to El cracking
- Isobutene/isobutane are at noise level
- thermal decomposition of TBAs initiated
- radical decomposition mechanism (increasing tBu radical signal)
- at T_{gas} > 330°C decomposition due to β-h-elimination becomes the important process
- tBu signal decreases due to increasing β-h-elimination and decreasing TBAs level
- saturation at T_{gas} > 450°C
- no TBAs signal
- tBu signal tracked by isobutane

- 1 Semiconductor manufacturing processes
- 2 Introduction to iTrap Technology
- 3 Application of iTrap
- 4 Etch Process Control

iTrap visualizes precursors, reaction products and contamination in your etch chamber

Real time etch process optimization

TCP/ICP etch chamber /low pressure regime (2-10 mT), BCl₃ etch, SiO₂ wafer

- iTrap allows study of etch reaction products as a function of pressure, concentration and previous cleaning steps
- Monitoring of chamber chemistry also during plasma off
- Correlation with etch rates enables ultrafast process optimization on the basis of real time iTrap data

End point detection

TiN Etch process

Heavy species like SiCl₃, TiCl₃, SiCl₄, HfCl₂ can be monitored, also in non-plasma conditions.

Conclusions

- We developed an ion trap for semiconductor process control
- Fast processes can be easily examined in real time
- Robustness of the instrument is realized by:
 - Reducing the gas load inside the instrument, while ensuring a high pressure during ionization
 - selecting inert materials
 - No detector
- iTrap allows endpoint detection of etch and cleaning processes
 - Process optimization and process time reduction
- Study of etch/movpe reaction products possible
 - As a function of pressure, concentration and previous cleaning steps to reduce e.g. first wafer effects
 - Gain insight of process chemistry
- Heavier species like SiCl₃, TiCl₃, SiCl₄, HfCl₂ can be easily monitored, also in non-plasma conditions (when OES cannot be used)

Fourier Transform Ion Trap mass spectrometer

DSMC Simulation

25

