

## **Role of Mass Spectrometry**

- Need improved threat coverage for identifying an expanded list of
  - Explosives/HMEs
  - Emerging chemical & narcotic threats
- Solutions are needed which offer significantly reduced FAR and ability to resolve interferences

#### Ion mobility spectrum (thermal desorption from a swab)



# **System Diagram**

#### Atmospheric pressure interface



## **API** interface design



Ion funnel allows efficient ion transmission at elevated pressures

#### Pumping speed:

- 0.6 L/min at 1 Torr
- 12 L/min at 10 Torr





### Ion funnel ion transmission for low m/z





Effective rf potential on the ion funnel axis (SIMION modeling)

APCI ion source; API interface comprised of heated capillary and ion funnel on LCQ Deca XP

### Ion funnel vs skimmer for ion transmission



- APCI ion source
- MeS permeation tube with dilution flow (~ 100 pptv)
- API interface comprised of heated capillary with a skimmer or ion funnel on an LCQ Deca XP (fixed injection time into the ion trap)

## LIT performance at different pressures



- APCI ion source
- MeS permeation tube (~ 300 pptv)
- API interface comprised of an ion funnel and ion guide with portable mass spectrometer
- N<sub>2</sub> supplied to high vacuum chamber through a capillary
- Hamamatsu hybrid detector



### **Mass resolution**

#### APCI ion source (positive ion mode), Chloroacetophenone vapors



#### **Ionization source**

#### Dielectric-barrier discharge (DBD):

- AC voltage: few kV, 5-50 kHz
- collapse of the local electric field caused by charges accumulated on the dielectric surface
- micro discharge ~ 20ns
- electron energy 1-10 eV
- ion energy ~ 0.03 eV, i.e. low-temperature plasma



**Coaxial configuration of DBD** 

#### Major advantages:

- Produces ions of both polarities
- Robust: operational reliability
- Diffuse nature allows ionization in large volumes
- Can be used for direct ionization from various surfaces.

## Effect of gas flow on ion chemistry



DBD 100 Hz, 1.46 kV $_{\rm p-p}$ , MS intake 180 cc/min, exhaust flow 400 cc/min

#### Inlet closed

#### Inlet flow 400 cc/min





# Representative spectra of PETN at different loading amounts







# Representative spectra of Tetryl



Direct deposit on a swab, DBD 100 Hz, 1.46 kV<sub>p-p</sub>, 10 scans averaged



# Representative spectra of RDX



Direct deposit on a swab, DBD 100 Hz, 1.46 kV<sub>p-p</sub>, 10 scans averaged

RDX 1 ng

RDX 10 ng





## Representative spectra of TNT and 2,4 DNT



Direct deposit on a swab, DBD 100 Hz, 1.46 kV<sub>p-p</sub>, 10 scans averaged

TNT 10 ng

2,4 DNT 10 ng







# Representative spectrum from human fingerprint oil



Fingerprint on a swab, DBD 100 Hz, 1.46 kV<sub>p-p</sub>, 10 scans averaged



# Representative spectra of Fentanyl and Methamphetamine



Direct deposit on a swab, DBD 100 Hz, 1.46 kV<sub>p-p</sub>, 10 scans averaged

Fentanyl 1 ng

Methamphetamine 5 ng





## Representative spectra of Cocaine



Direct deposit on a swab, DBD 100 Hz, 1.46 kV<sub>p-p</sub>, 10 scans averaged

Cocaine 1 ng

Cocaine 10 ng





bringing technology to life

#### **Conclusions**

- A portable linear ion trap mass spectrometer with a DBD ionization source was designed, built and tested
- High ion transmission efficiency from atmosphere into the vacuum of mass analyzer is achieved using a proprietary ion funnel design
- The system incorporates a thermal desorber for detection from a swab or similar sampler
- Initial results demonstrate trace level detection of explosives and high-priority narcotic substances

#### **Acknowledgements**

Smiths Detection engineering team:

Doug Green, Sergey Ivanov, Jeff Siebert, Gennadiy Lotkin, Stephen Pratt, Andrew Tillett

