

b UNIVERSITÄT BERN

HEMS 2015

Towards detection of life in space exploration missions by using a miniature laser ablation ionization mass spectrometer

Andreas Riedo

P. Moreno-García, V. Grimaudo, M.B. Neuland, M. Tulej, P. Broekmann and P. Wurz

Physics Institute, Space Research and Planetary Sciences University of Bern, Switzerland

Department Chemistry and Biochemistry, Interfacial Electrochemistry Group, University of Bern, Switzerland

Introduction Space research and Planetary Sciences

b UNIVERSITÄT BERN

» In-situ measurements on extra terrestrial material

(chemical composition on-site, isotope analysis, bio-signatures)

Image credit: NASA

Introduction Bio-Signatures in Space Research

» Various bio-signatures exists

(e.g. DNA, proteins, amino acids, lipids/hydrocarbons, fractionated elemental composition within solid material)

Image credit: NASA

^b UNIVERSITÄT BERN

U

Introduction Bio-Signatures in Space Research

^b UNIVERSITÄT BERN

» Life time of bio-markers depends on environment! (temperature, UV and ionizing radiation, etc.)

» Sub-surface environment is of high interest!

Introduction Current and Future Space Mission

D UNIVERSITÄT BERN

- » Need for advanced instruments capable of the detection of biosignatures at mircometre scale
- » Simple(er) sample preparation and measurement procedures
- » Searches for geochemical signature:
 - habitable environments
 - chemical composition indicative of biology or metabolic processes
- » Microorganism of interest: <u>endoliths</u> and epiliths
 - Well preserved, embedded in vein or vesicle filling mineral phases e.g., carbonates or quartz

22/09/15

Laser Mass Spectrometer – LMS

Capabilities (in respect of Astrobiology)

 Quantitative elemental and isotope analysis (ablation mode)

- Elements: host and fossil composition
- Isotope: possible fractionation processes (Riedo et al., J. Mass Spectrom., 2013, Riedo et al., J. Anal. At. Spectrom., 2013, Riedo et al., Planet Space. Sci., 2013)
- Chemical maps of heterogeneous material surfaces (Neuland et al., Planet. Space Sci., 2014)
- Depth profiling: quantitative analysis of redistribution of elements across the surface thickness with nm-resolution (*Grimaudo et al., Anal. Chem., 2015*)
- LMS combined with optical microscopy (CAMAM):surface and microstructure morphology, texture (Tulej et al., Geostand. Geoanal. Res., 2014)

D UNIVERSITÄT BERN

Laser Mass Spectrometer – LMS Instrumental Setup for R&D

UNIVERSITÄT BERN

U

Riedo et al., J. Anal. At. Spectrom., 2013

Laser Mass Spectrometer – LMS Instrument Design & Principle of Operation

UNIVERSITÄT BERN

- Dimensions of 160mm x Ø 60mm, ~2kV, ~2kg, ~15W (flight design)
- » Ion Trajectory Simulations by SIMION
- » Ring anode detector
- » 2x 8-bit high speed digitizer with onboard processing ADC cards, each with 2 channels

Rohner et al., Meas. Sci. Technol., 2003; Riedo et al., J. Mass Spectrom., 2013

Riedo et al., J. Mass Spectrom., 2013, Riedo et al., J. Anal. At. Spectrom., 2013

UNIVERSITÄT

9

Laser Mass Spectrometer – LMS

Laser Ablation Ion Source & Mass Analyzer Characteristics

» Ion Source: pulsed laser system

fs-laser system

— IR (775nm)

 ~190fs pulse width
 ≤ 1kHz repetition rate
 ~5-40µm crater diameter
 < 5TW/cm²

R-TOF characteristics

- Mass calibration: $m(t) = k_0(t-t_0)^2$
- » Spectra collected within ~13 μs
- Mass resolution: 500-1000 (desorption mode ~≤ 1500)
- » Dynamic range ≥ 10^8
- » High detection sensitivity down the 10ppb

Research in Semiconductor Industry Case Study for Depth Profiling using LMS

⁶ UNIVERSITÄT BERN

top view

side view

Why copper ?

- ✓ Lower resistance
- ✓ Higher allowed current density
- ✓ Increased scalability

>1 billion interconnects on a chip10 nm features

Research in Semiconductor Industry Super conformal Fill

D UNIVERSITÄT BERN

P. Broekmann et al., Electrochim. Acta, 2011; T. P. Moffat et al., IBM J. Res. & Dev. 2005; R. Akolkar et al., J. Electrochem. Soc. 2011

Research in Semiconductor Industry Classical procedure

D UNIVERSITÄT BERN

Focused Ion Beam (FIB) - cut

N.T.M. Hai, J. Odermatt, V. Grimaudo, K.W. Krämer, A. Fluegel, M. Arnold, D. Mayer, and Peter Broekmann, J. Phys. Chem. C 116 (2012) 6913 P. Wurz et al., Conference Proceedings of Symposium on Surface Science, Sputtering of clean and oxidized Cr and Ta Metal Targets using SNMS and SIMS, (1990) 181-185

Depth Profiling using LMS Depth Resolution – Mean Ablation Rate

UNIVERSITÄT BERN

V. Grimaudo et al., Anal. Chem., 87, 2037–2041, 2015

22/09/15

Depth Profiling using LMS Depth Resolution – Multi Layer Samples

^b UNIVERSITÄT BERN

Anti-correlation of Cu and contaminants

V. Grimaudo et al., Anal. Chem., 87, 2037–2041, 2015

Depth Profiling using LMS Depth Resolution – Multi Layer Samples

^b UNIVERSITÄT BERN

Oscillation of C, O, N in Phase

V. Grimaudo et al., Anal. Chem., 87, 2037–2041, 2015

Current Studies - Semiconductor Industry

Incorporation studies between transition layers (Fundamental)

^b Universität Bern

U

22/09/15

P. Moreno-García et al., Electrochimica Acta, 2015, submitted 16

Current Studies - Pharmaceutical Industry 3D chemical analysis of alloy samples (Application)

^b UNIVERSITÄT BERN

b

U

22/09/15

V. Grimaudo et al., Anal. Chem., 2015, to be submitted. 17

Current Studies – Astrobiology Chemical Analysis of micro-sized Fossil (HIGHLIGHT)

D UNIVERSITÄT BERN

Conclusions and Outlook

⁶ UNIVERSITÄT BERN

» Figure of merit of current LMS:

- High dynamic range of at least eight orders of magnitude
- Detection sensitivity down to few ppb's
- Mass resolution (m/ Δ m) in the range of 500 1000
- Quantitative elemental and isotope analysis
- Quantitative depth profiling -> 3D elemental imaging

» Applications:

- Studies of heterogeneous materials with high spatial resolution
- Quantitative elemental analysis of microstructures down to the trace element level (sub-ppm)
- Element correlation studies (insight to host and sample mineralogy)

» Outlook:

- fs system operated at UV radiation
- Increase of lateral resolution by implementation of new optical system

UNIVERSITÄT BERN

Thank you for your attention

Additives

D UNIVERSITÄT BERN

