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Concept Team 

• Ken Farley – Caltech – Principal Investigator (PI) 

• Murray Darrach – JPL – JPL PI 

• Stojan Madzunkov – JPL – Instrument Scientist 

• Rembrandt Schaefer – JPL – Electronics architect & 
development lead engineer 

• Evan Neidholdt – JPL – Sensor Cog-E & instrument systems 
engineering 

• Jurij Simcic – JPL – Radiation modelling & shielding 
calculations 

• Dragan Nikolic – JPL – Instrument performance modelling & 
theoretical calculations 

• Marcin Pilinski – ASTRA Corp. – Funnel Collector Dev. 

• Timothy Minton – Montana State Univ. – Funnel Testing 
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Presentation Outline 

• Mission concept description for MARINE 

instrument concept 

• Science performance of JPL Mass Spec 

• Sensor architecture & configuration 

• Electronics architecture & implementation 

• Harsh environment survivability & test 

program 

• Future deployment opportunities 
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Europa Clipper Mission Concept 
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 Mission is now known as “Europa Multiple-Flyby Mission” 



Europa Flyby Mission Concept 
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Instrument Performance & Resources 
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JPL Flyby MS – Ion Trap 
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A: flight MS from Vehicle Cabin Atmosphere Monitor (VCAM) 

B: first generation “wireless” QITMS (NASA PIDDP) 

C: Engineering model of wireless QITMS for VCAM follow-on 

     - the Spacecraft Atmosphere Monitor (SAM) for ISS in 2018 

D: Prototype QITMS for MARINE 

Development Heritage of MARINE Quadrupole 

Ion Trap Mass Spectrometer (QITMS) 

Prototype MARINE QITMS 

  
Sensitivity: 1e15 counts/Torr/sec 

Mass: 5.9 kg  

(including radiation shielding) 

 
MARINE Sensor Head Completed Vibe Testing in September 2015 



Science Performance1 – JPL MS 
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isotope K-profile fit 2013 SRTD isotec 

% manual  % 

Xe-124 0.569(9) 0.555(8)  0.50(5) 

Xe-126 2.889(8) 2.83(2)  2.80(5) 

Xe-128 16.117(8) 15.85(7) 16.0(5) 

Xe-129 71.910(7) 72.1(2) 71.90(5) 

Xe-130 3.014(8) 3.14(2) 3.10(5) 

Xe-131 4.119(9) 4.15(3) 4.20(5) 

Xe-132 1.326(7) 1.33(1) 1.40(5) 

Xe-134 0.0428(8) 0.044(2) 0.10(5) 

Xe-136 0.0076(7) 0.008(1) -- 

isotope K-profile fit 2013 SRTD terrestrial 

% manual  % 

Xe-124 0.095(9) 0.100(4)  0.0952(3) 

Xe-126 0.089(9) 0.091(4)  0.0890(2) 

Xe-128 1.907(8) 1.88(2) 1.9102(8) 

Xe-129 26.330(4) 26.4(1) 26.401(8) 

Xe-130 4.094(7)  4.09(4) 4.071(1) 

Xe-131 21.229(4) 21.3(1) 21.232(3) 

Xe-132 26.933(4) 26.9(1) 26.909(3) 

Xe-134 10.458(5) 10.46(6) 10.436(2) 

Xe-136 8.865(5) 8.80(6)  8.857(4) 

New curve fitting = 
greater accuracy and 
ability to deconvolve 

unresolved peaks  

[1] Madzunkov, S.; Nikolic, D. “Accurate Xe Isotope Measurement Using JPL Ion Trap.” J. Am. Soc. Mass Spectrom.  2014, 25, 1841-1852. 



Science Performance – JPL MS 
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High Resolution Mode 
 

m/∆m ≈ 4000 FWHM 

for 10-80 Da mass 

range  

 

Require resolutions  

m/∆m ≈ 2000 FWHM 

to resolve pairs like: 

a) 32S and 16O16O 

b) H2 
32S and 34S 

c)  H2 
32S and 16O18O 



Sensor Architecture 

10 



Prototype Sensor 
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Prototype Sensor 
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Detector radiation shield Ion trap MS 

Electron impact ionizer 

Funnel 
collector 

Ion repeller rings 

12” 



Detector assembly 

• Channel electron multiplier operated in ion-counting mode. 
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Channel electron 
multiplier detector 

Entrance grids 

Signal feedthru on 
underside (not visible) 



• Funnel testing in relevant 

environment 

• May be possible to achieve TRL 6   

• Materials tested: Evaporated Gold, 

Silicon, and proprietary surfaces 

• Incident beams: Atomic O, O2, Ar 

 

• Next Tests: CH4, CH3OH, C2H5OH 

Hypervelocity Neutral Beam Testing of Funnel Collector 

Apparatus Measured Neutral Beam Velocity Profiles 

Proprietary funnel 
material yields super-
specular reflection 

Lobe of  
reflected 
beam 

≈ 20% Ek loss in collision 



Hypervelocity Neutral Beam Testing of Funnel Collector 

Proprietary Material is highly non-reactive – even to atomic oxygen 
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Instrument Electronics 
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Prototype MARINE MSEA  
radiation hardened design 

A B

A: Mass Spectrometer 
Controller Electronics 
(MSCE) 

B: Prototype High 
Voltage Power Board 
(HVPB) 

Mass: 3.5 kg  
(including radiation shielding) 



Harsh Environment Survivability & Test Program 

• What harsh environment? 

– T=0: Launch dynamics 

– Cruise: Venus Flyby (thermal) 

– Operations: Jovian orbit (Thermal, Radiation) 
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Sensor Dynamics Testing 

• Completed random vibration testing to ‘workmanship’ levels, September 2015. PASS 
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GEVS* Random Vibe Levels
• GSFC STD 7000 for qualification of hardware less than 50 pounds

14.1 gRMS (Qualification)

10.0 gRMS (acceptance)

7.1 gRMS (workmanship)**

5.0 gRMS

** Not the same spectrum as the workmanship vibe but approximately the same g (RMS) level
* General environmental verification standard, GSFC-STD-7000 available on Internet 



Thermal Environment 
• During cruise, one trajectory brings the instrument close to Venus, where it 

would be necessary to add a cover over the instrument to shield from high 

heat loads. 

• During operations, the problem is getting too cold. 
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If launched on ATLAS, extended time closer 
the Sun and Venus would heat the 
instrument. 



Radiation Modelling 

• The spacecraft is actually orbiting Jupiter to achieve the Europa flybys. 

• The background radiation environment is nominally 2 Mrad (megarad), 

which the Flyby MS must not only survive, but operate with adequate signal-

to-noise. 

• We modeled the radiation environment and determined the expected 

effectiveness of the shielding design using GEANT4. 
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Based on radiation 
modelling results, 
we determined the 
type and required 
thicknesses for 
shielding the 
detector. 



Future Opportunity – ISS Exterior 
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Take engineering model and do minimum work 
required to interface to ISS 

 
 
 
 
 
 
 
Engage NASA HTIDES and PSTARs programs to 
augment existing launch/deployment funding for 
operations and analysis. 

ISS Exterior is the relevant environment for 
testing the instrument system 



Conclusion & Acknowledgments  
• JPL Flyby MS developed and tested for survivability on space 

missions. 

• Based on very mature JPL ion trap mass spectrometer. 

– Unparalleled science performance, and more papers coming! 

• Future opportunities include ISS exterior as platform for study 
of Earth using a flyby MS. 

– Gas mixing in upper atmosphere 

– Life detection??? 
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