A COMPACT TWO-STEP LASER TIME-OF-FLIGHT MASS SPECTROMETER FOR IN SITU ANALYSIS OF PLANETARY SURFACES

NASA Goddard Space Flight Center

Timothy J. Cornish C&E Research, Inc.

Xiang Li University of Maryland, Baltimore County Andrej Grubisic

University of Maryland, College Park

Kyle Uckert New Mexico State University

SOLAR SYSTEM DESTINATIONS... THAT ARE JUST BEGGING TO BE ANALYZED!

10/19/2015

Enceladus & Titan

3

10/19/2015

S. Getty/HEMS 2015

10/19/2015

CERES

S. Getty/HEMS 2015

WHAT DO THESE BODIES HAVE IN COMMON? VOLATILES, INCLUDING WATER!

WHY MASS SPECTROMETRY FOR PLANETARY MISSIONS?

• 'Universal' Detector

• Comprehensive Sample Analysis: compatible with various front-end analytical techniques

• Flexible to mission architecture: flybys, orbiters, landers, rovers

S. Getty/HEMS 2015

10/19/2015

LASER DESORPTION/IONIZATION FOR DIRECT ANALYSIS OF PLANETARY SURFACE MATERIALS

S. Getty/HEMS 2015

Commercial LD-TOF-MS (or MALDI) is a gold-standard technique for the analysis over a wide range of molecular weight, including large biomolecules

LD-TOF-MS as a compact instrument is capable of analyzing broadband composition directly from a solid sample

- Minerals
- Small organics: amino acids, carboxylic acids, polycyclic aromatics, etc.
- Intermediate organics: molecular fossil precursors, conjugated polymers, etc.
- Large organics: peptides, biopolymers, informational polymers, etc.
- Can resolve isotopes elemental & ¹²C/¹³C patterns

DUAL POLARITY ION MODE: INORGANIC COMPOSITION SEDIMENTARY AND AQUEOUSLY ALTERED MINERALS

COMPLEMENTARY POSITIVE AND NEGATIVE ION DETECTION: DETECTING ORGANICS ACROSS CLASSES

BUT IN REALITY WE COULD GET A SPECTRUM LIKE...

14

S. Getty/NASA GSFC

4/1/2015

S. Getty/HEMS 2015

15 10/19/2015

L2MS PROTOTYPE:

FEATURES AND OPERATING PRINCIPLES

Ionization

Pulse

Two-Step Laser MS

Precision Ion Gating

Fragment Analysis

16 10/19/2015

S. Getty/HEMS 2015

2-10 mJ/pulse(0.2-1 mJ/mm²)

Resonance Enhanced Multiphoton Ionization Selective ionization:

- A. molecules ionization energy is lower than the two-photon energy
- B. intermediate state can be pumped by onephoton absorption

Absorption of IR photons (0.12 eV): Molecules may be at a higher state

Annu. Rev. Phys. Chem. 2007. 58:585–612

10/19/2015

S. Getty/HEMS 2015

MOTIVATION FOR L2MS: MOLECULAR SPECIFICITY

- L2MS has been an informative technique used in the analysis of extraterrestrial materials, such as meteorites and Stardust samples
- The ionization laser can be chosen to be selective to a subset of organic species, such as polycyclic aromatic hydrocarbons
- Comparison between the single-laser baseline and L2MS spectra can allow separation of aromatic contributions

L2MS PROTOTYPE: LABORATORY EXPERIMENT

IR Laser:

- 1064 nm Nd:YAG
- 2.7 to 3.1 um tunable OPO
- 10 um CO2

UV Laser:

266 nm harmonic Nd:YAG 4-7 ns pulse width focused to 50-100 um spot

L2MS prototype: SELECTIVITY TO AROMATICS

S. Getty/HEMS 2015

10/19/2015

L2MS prototype: SELECTIVITY TO AROMATICS

Getty et al. IEEE AeroConf 2014

L2MS – SELECTIVITY IN IONIZATION STEP

L2MS – SELECTIVITY IN DESORPTION STEP

S. Getty/HEMS 2015

10/19/2015

Transmittance

FEATURES AND OPERATING PRINCIPLES

Two-Step Laser MS Pulse

L2MS PROTOTYPE:

Precision Ion Gating

Fragment Analysis 27 10/19/2015

S. Getty/HEMS 2015

L2MS PROTOTYPE: PRECISION ION GATING AND TANDEM MS

Structural determination using MS/MS techniques

28

MCP Signal (V)

L2MS PROTOTYPE: FEATURES AND OPERATING PRINCIPLES Ionization Pulse

Precision Ion Gating

Fragment Analysis

Neutral Plume

lons

29 10/19/2015

Laser Pulse

S. Getty/HEMS 2015

L2MS PROTOTYPE: LASER-ASSISTED COLLISION-INDUCED DISSOCIATION FOR PSEUDO-TANDEM MASS SPECTROMETRY

L2MS INSTRUMENT DESIGN:

5 KG-CLASS IN SITU ANALYZER

POTENTIAL MISSIONS: 2020S-2030S

S. Getty/HEMS 2015

10/19/2015

Our Team

GSFC Planetary Environments Lab

- Will Brinckerhoff
- Xiang Li
- Andrej Grubisic
- Rick Arevalo
- Melissa Floyd

GSFC Astrochemistry Lab

- Jamie Elisila
- Mike Callahan

C&E Research, Inc

- Tim Cornish
- Scott Ecelberger

GSFC Laser and Electro Optics Branch

• Tony Yu

Stanford University

- Dick Zare
- Qingaho Wu

New Mexico State University

• Kyle Uckert (NASA Space Technology Research Fellow)

Supported by

- Planetary Instrument Definition and Development Program
- Astrobiology Science and Technology for Instrument Development Program