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SOLAR SYSTEM DESTINATIONS… 
THAT ARE JUST BEGGING TO BE ANALYZED! 
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ENCELADUS & TITAN 
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EUROPA 
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COMETS  
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CERES 
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WHAT DO THESE BODIES HAVE IN COMMON? 
VOLATILES, INCLUDING WATER! 
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WHY MASS SPECTROMETRY FOR  
PLANETARY MISSIONS? 

 ‘Universal’ Detector 
 

 Comprehensive Sample Analysis:  compatible with 
various front-end analytical techniques 

 
 Flexible to mission architecture:  flybys, orbiters, 

landers, rovers 
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Presentation Notes
To zeroth order, you don’t have to anticipate which species you will detect
If done carefully, mass spectrometers can analyze a sample for volatile gases, organic molecules, and can support the identification of minerals
The fundamental technique of MS is compatible with a wide variety of mission architectures.




LASER DESORPTION/IONIZATION FOR DIRECT ANALYSIS 
OF PLANETARY SURFACE MATERIALS 
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Commercial LD-TOF-MS (or MALDI) is a gold-standard 
technique for the analysis over a wide range of 
molecular weight, including large biomolecules 

200 cm
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Presentation Notes
Slide 3:  But LD-TOF is more generally useful for detecting not only high molecular weight organics, but it can also tell you about the composition of a solid sample in general.



This type of instrument is compatible with a miniature in situ capability, and several prototypes in our lab at Goddard represent a 10-fold miniaturization, compared to the lab-scale version.



This technique can be miniaturized by a factor of 10 in size, compared to the commercial instrument I showed you, and so it is an excellent prospect for conducting in situ science and exploration on a landed mission to Mars.  This particular instrument is in development at NASA Goddard, and I should point out that, not only can we analyze positive ions, but we can also detect and analyze negative ions, which can represent complementary information about composition.  All of the spectra I am about to show you were taken from prototypes of our miniature instrument.
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LD-TOF-MS as a compact instrument        
is capable of analyzing broadband 
composition directly from a solid sample 
 
• Minerals 
• Small organics:  

amino acids, carboxylic acids, polycyclic aromatics, etc. 
• Intermediate organics:  

molecular fossil precursors, conjugated polymers, etc. 
• Large organics:  

peptides, biopolymers, informational polymers, etc. 
• Can resolve isotopes  

elemental & 12C/13C patterns  
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Presentation Notes
Slide 3:  But LD-TOF is more generally useful for detecting not only high molecular weight organics, but it can also tell you about the composition of a solid sample in general.



This type of instrument is compatible with a miniature in situ capability, and several prototypes in our lab at Goddard represent a 10-fold miniaturization, compared to the lab-scale version.



This technique can be miniaturized by a factor of 10 in size, compared to the commercial instrument I showed you, and so it is an excellent prospect for conducting in situ science and exploration on a landed mission to Mars.  This particular instrument is in development at NASA Goddard, and I should point out that, not only can we analyze positive ions, but we can also detect and analyze negative ions, which can represent complementary information about composition.  All of the spectra I am about to show you were taken from prototypes of our miniature instrument.



DUAL POLARITY ION MODE: 

INORGANIC COMPOSITION 
SEDIMENTARY AND AQUEOUSLY ALTERED MINERALS 
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Presentation Notes
Slide 8:  Here are some examples of positive mode spectra on a series of sulfates that clearly show the cationic composition of Epsomite, or MgSO4, Jarosite, an iron sulfate, and gypsum, a calcium sulfate.  These are relevant to Mars and even perhaps Europa.



What is the point of this slide?
When we are doing surface composition measurements, the first thing we’ll want to know is context. Mineralogical, inorganic context 

In addition to organics detection, we can detect inorganic composition that can point to mineralogy, and even degree of hydration.  Here’s an example for gyspum.  We see higher order oxides of calcium in gyspum than in anhydrite.  We’ve seen a correlation in these higher order oxides and degree of hydration, not only in sulfates, but in other mineral families as well.


And I’ve focused on organics up to this point, but LD-TOF techniques are also capable of revealing inorganic composition, allowing us to infer contextual mineralogy of a surface sample.  Here is an example of gypsum and adhydrite, where the higher order oxides seen for gypsum appear to correlate with higher degrees of hydration.  We have seen a similar trend for other mineral families as well.

This measurement capability is well suited for organics analysis, but of course, laser ionization techniques can also be used to characterize the inorganic composition as well.  We have analyzed a suite of mineral samples that are representative with Martian mineralogy, and based on positive-mode and negative-mode spectra, we can infer mineral composition in a solid or powdered sample.



COMPLEMENTARY POSITIVE AND NEGATIVE ION DETECTION: 

DETECTING ORGANICS ACROSS CLASSES 
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Presentation Notes
Slide 10:  Positive and negative ion detection is complementary in the case of organic samples, as well.  In positive mode, the presence of polycyclic aromatic hydrocarbons is readily detected, such as in the case of coronene.  In negative mode, we are especially sensitive to the detection of carboxylic acids and amino acids doped into organic and inorganic mixtures.




And because the sample isn’t substantially heated in the desorption process, we can readily detect organics in the presence of perchlorate.  This is a kaolinite clay sample that has been spiked with a model organic, phthalic acid, and sodium perchlorate.  This could be especially important in the case of a surface sample in which the organics and perchlorates are co-located, but where the perchlorates have not completely oxidized the organic content of the regolith.


Here is an example mass spectrum from co-mixed sodium perchlorate with a phthalic acid standard, doped into kaolinite clay.  Not only can we see the perchlorate, but it’s clear that the organic parent peak of phthalic acid is also readily detected at 166 mass units.  This is an important advantage of laser desorption techniques, where the 5-ns laser pulse is short enough to prevent degradation of organics in the presence of perchlorate.  Other volatilization techniques, like pyrolysis, hold the sample at elevated temperatures for extended periods of time, and under those conditions, the organics are likely to decompose through oxidation.


Not only are perchlorates readily detected with negative ion LD-TOF-MS, but since the sample is not heated appreciably, we can detect organics in the presence of perchlorate.  This is a kaolinite powder that was spiked with an organic standard, in this case, phthalic acid, and sodium perchlorate.  The perchlorate peaks are again easily seen, and the organic parent molecule is preserved at m/z of 166.  We have repeated this experiment with a series of organics, including other carboxylic acids and amino acids as well.



BUT IN REALITY WE COULD GET A SPECTRUM LIKE… 
10/19/2015 
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TANDEM TWO-STEP LASER MASS SPECTROMETER 
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L2MS PROTOTYPE: 

FEATURES AND OPERATING PRINCIPLES 
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Presentation Notes

Ionization efficiency of resonant mechanism is >> than that of nonresonant mechanism

Absorption of one photon causes a molecule to make a transition to an electronically excited state and absorption of a second photon causes ionization of the excited molecule

Multiphoton ionization energy:
266nm + 266nm = 9.32 eV
212nm + 212nm = 10.70 eV

Chromophore we utilize is the benzene ring moiety which has a high absorption at 266nm associated with electronic excitation of the aromatic ring (pi to pi*).  Provides an ionization window on the class of compounds referred to as PAHs

Soft ionization:  ions formed with very little internal excitation thus do not undergo fragmentation
Ionization potentials for some PAHs:
naphthalene: mass 128  8.12eV
Phenanthrene: mass 178  7.89eV
Pyrene: mass 202  7.43eV
Coronene: mass 300  7.34eV
Circumanthracene: mass 496  6.86eV



Two photons of 266 nm (9.3 eV) 
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Presentation Notes
Another idea come from the different ionization energy of the compounds. This diagram show different compounds with ionization energy and molecular weight. If we have a photon energy tunable UV laser, and change the photon energy from high to low, the spectrum of asphaltene may be shift to higher m/z.



 L2MS has been an 
informative technique used 
in the analysis of 
extraterrestrial materials, 
such as meteorites and 
Stardust samples 

 The ionization laser can be 
chosen to be selective to a 
subset of organic species, 
such as polycyclic aromatic 
hydrocarbons 

 Comparison between the 
single-laser baseline and 
L2MS spectra can allow 
separation of aromatic 
contributions 

MOTIVATION FOR L2MS: 

MOLECULAR SPECIFICITY 
Hahn et al. 1998 
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L2MS PROTOTYPE: 

LABORATORY EXPERIMENT 

IR Laser 
TOF-MS prototype 

UV Laser 

IR Laser: 
• 1064 nm Nd:YAG 
• 2.7 to 3.1 um tunable OPO 
• 10 um CO2  

UV Laser: 
• 266 nm harmonic Nd:YAG 

4-7 ns pulse width 
focused to 50-100 um spot 
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L2MS PROTOTYPE: 

SELECTIVITY TO AROMATICS 

Model aromatic:   pyrene 
  m/z 202 
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L2MS PROTOTYPE: 

SELECTIVITY TO AROMATICS 

G
etty et al. IEEE AeroConf 2014 
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L2MS – SELECTIVITY IN IONIZATION STEP 

10/19/2015 S. Getty/HEMS 2015 

24 

Presenter
Presentation Notes
Polycyclic aromatic hydrocarbons and other aromatic species are especially detectable in UV L2MS. Notice that the salt peaks are minimized here.



L2MS – SELECTIVITY IN DESORPTION STEP 
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Presentation Notes
Coincides with vibrational features in published spectra of PAHs, e.g., fluoranthene and pyrene
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L2MS PROTOTYPE: 

FEATURES AND OPERATING PRINCIPLES 
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L2MS PROTOTYPE: 

PRECISION ION GATING AND TANDEM MS 
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Presentation Notes
Slide 16:  One advanced technique is tandem mass spectrometry that allows us to do in-depth fragment analysis of selected mass peaks of interest to give greater confidence in structural assignment.  This is made possible by the recent implementation of a precision ion gate that selects the parent mass by precisely timing a deflection pulse on a fine gauge wire near the flight path.  The results are shown here for two peptides that spontaneously fragment, polyproline and angiotensin.  The product ions represent the sequential loss of individual amino acids, and the unique feature of a curved field reflectron is what makes it possible to focus both the parent and the products simultaneously.  In the future, we will make this technique more general by incorporating a means of inducing fragmentation for those species that don’t spontaneously dissociate.


We can also integrate advanced MS capabilities into the small prototypes without significant impact to size or complexity.  One example is fragment analysis by tandem mass spectrometry.  We can use an ion gate to isolate parent molecules of interest plus their post-source decay product ions in a single mass spectrum.  This is made possible by a unique feature of our analyzer, the curved field reflectron.  These are two smaller peptides, angiotensin and polyproline, so each of these product peaks actually represents the sequential loss of an amino acids from the peptide.


The LD-TOF instrument is also compatible with advanced mass spectrometry techniques, such as fragmentation analysis for improved structural identification of high priority mass peaks within a complex spectrum.  Here is a mixture of two peptides, angiotensin and polyproline.  With ion gating techniques, we can isolate each parent mass *and* its product ions, which repsent individual amino acids falling off of these peptides.  This is made possible by the curved field reflectron that focuses both parent and fragment ions at the detector simultaneously.  Tandem MS can be done in our miniature prototype without significant impact to the size or complexity of the instrument.



Here are a couple of other biomolecules, peptides, to demonstrate an advanced mass spectrometric technique that can be adapted to a miniature instrument.  Precision ion gating allows us to select a particular parent molecule of interest and analyze its fragmentation pattern.  This will help us in interpreting a complex mass spectrum because the fragmentation pattern, in a way, a molecular fingerprint that can resolve isobaric and isomolecular interferences. The fragmentation patterns are shown here for angiotensin and polyproline, which were mixed together in this particular sample.  This is an example of spontaneous fragment decay in peptides that fall apart easily.  More generally, we can use a secondary impulse to induce fragmentation.  We have recently been awarded a PIDDP to look at just this advanced capability in our miniature instrument.
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FEATURES AND OPERATING PRINCIPLES 
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L2MS PROTOTYPE: 
LASER-ASSISTED COLLISION-INDUCED DISSOCIATION 
FOR PSEUDO-TANDEM MASS SPECTROMETRY 
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L2MS INSTRUMENT DESIGN: 

5 KG-CLASS IN SITU ANALYZER 
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Presentation Notes
Slide 4:  The LD-TOF prototype is a 5 kg-class instrument, including the analyzer, housing, laser, optics, electronics, and pump. 



Let me just close by giving a little bit of detail about the miniature LD-TOF-MS that we are developing. The laser is aligned down the bore, the sample can be acquired in powdered or solid form, the ions are extracted here, here is the curved field reflectron, and here are the linear and reflected detectors.  The instrument housing is evacuated using a miniature Creare turbo pump, and we have estimated the whole instrument to be a 5 kg class instrument.


Let me just close with some details of our instrument design.  The surface of Mars can be sampled by a small robotic front end, and the resulting powder is positioned close to the instrument inlet.  The laser can be positioned down the bore of the instrument, as shown here, and the analyzer volume is pumped by a miniature Creare turbomolecular pump.  The ions are extracted by the ion source assembly, pass through a center hole in the detector assembly, are reflected back, and are detected at this position.  I should also point out that this design allows us to select between the reflected detector for high mass resolution and a linear detector for sensitivity to very high masses.  A mass estimate shows that this instrument would be a 5 kg-class instrument.
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