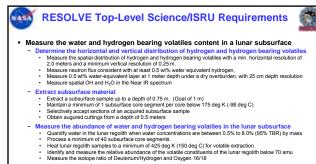


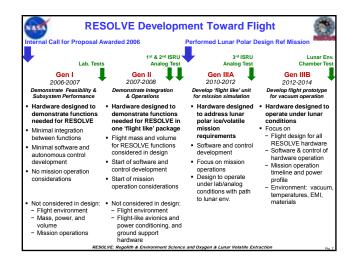
What is RESOLVE?
Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

 $\ensuremath{\text{RESOLVE}}$ is an internationally developed $\underline{\ensuremath{\text{payload}}}$ (NASA and CSA) that that can perform two important missions for Science and Human Exploration of the Moon

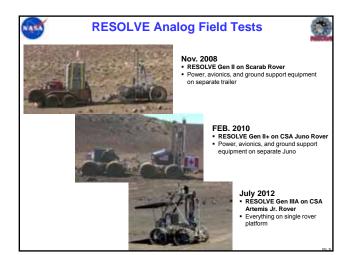
Resource Prospecting Mission: (Polar site)

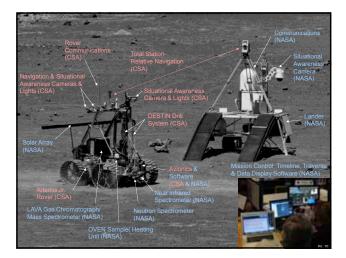

NASA

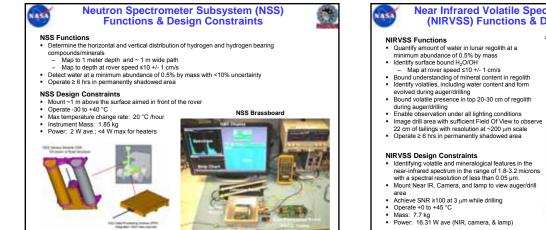
- Verify the existence of and characterize the constituents and distribution of water Map the surface distribution of hydrogen rich materials
 Determine the mineral/chemical properties of polar regolith

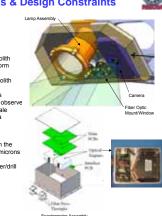

- Measure bulk properties & extract core sample from selected sites To a depth of 1m with minimal loss of volatiles
- Heat multiple samples from each core to drive off volatiles for analysis
 From <100k to 423 K (150°C)
 From 0 up to 100 psia (reliably seal in aggressively abrasive lunar environment)
- Profile up to too bala (enably sea in aggressively abrasive funal environment)
 Determine the constituents and quantities of the volatiles extracted
 Quantify important volatiles: H₂, He, CO, CO₂, CH₄, H₂O, N₂, NH₃, H₂S, SO₂
 Survive limited exposure to HF, HCI, and Hg

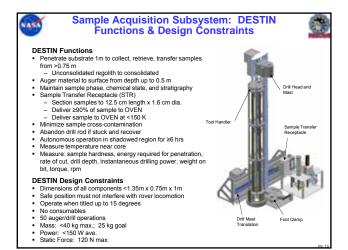
ISRU Processing Demonstration Mission: (Equatorial and/or Polar Site)

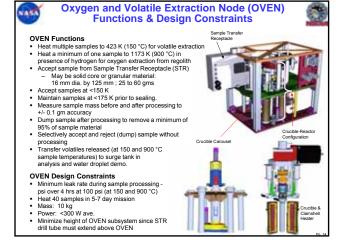

- Demonstrate the Hydrogen Reduction process to extract oxygen from lunar regolith Heat sample to reaction temperature From 423 K (150°C) to 1173 K (900°C)
- Flow H₂ through regolith to extract oxygen in the form of water
 Capture, quantify, and display the water generated




- Measure geotechnical characteristics of the lunar highlands and cold traps
 Measure the distribution of grains in the lunar regolith with respect to size and shape. (GOAL)
 Measure bulk characteristics of lunar regolith
 Determining geotechnical parameters of the drilling media during the sample acquisition phase
- Identifying mineralogical features in the lunar regolith
- Demonstrate oxygen extraction from regolith using the Hydrogen Reduction process Heat samples to 1175 K (902 C) to hydrogen reduction
- Measure water vapor produced limage water condensate/droplets produced during volatile analysis and $\rm H_2$ reduction







- Identifying volatile and mineralogical features in the near-infrared spectrum in the range of 1.8-3.2 microns with a spectral resolution of less than 0.05 µm.
 Mount Near IR, Camera, and lamp to view auger/drill

Vacuum Demonstration Unit GCMS Design: Integrated COTS Approach

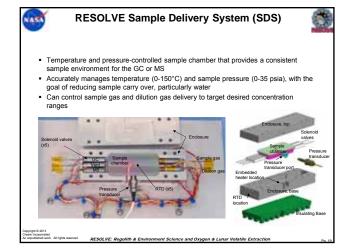
Changes required for Vacuum Unit -Flight forward

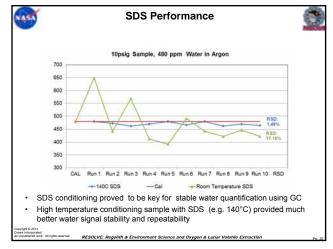
Maintain fast scan rate and analyte sensitivity

-Less mass

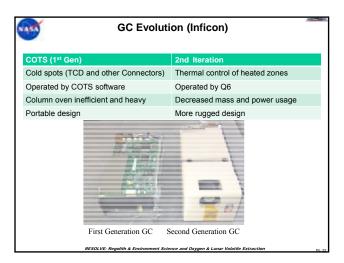
-Less power

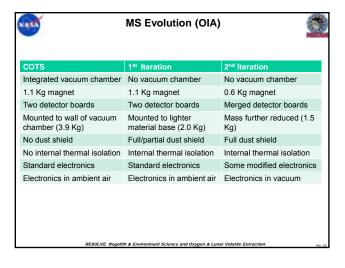
-More rugged (Vibe tolerant)

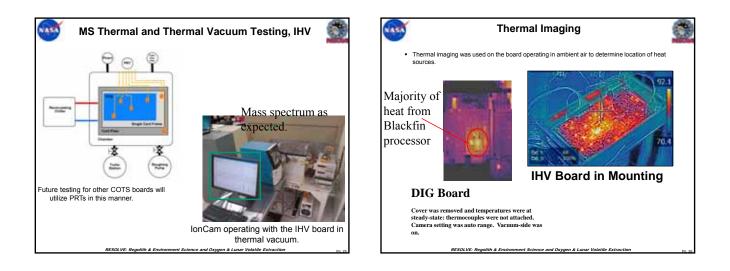

-Dilution capability (prior unit saturated at about 5% water)

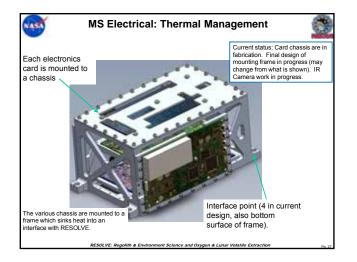

-Software control from Xiphos- Payload control

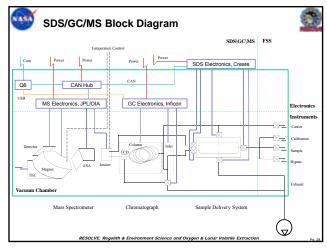
-Integrated Avionics controlled by payload

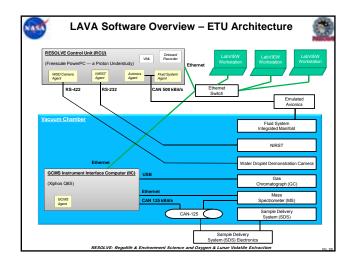

-Thermal Vacuum (materials and electronics)

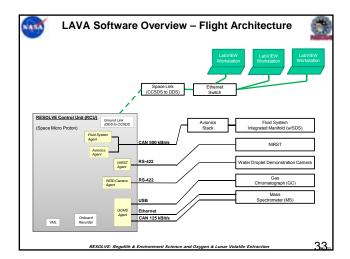


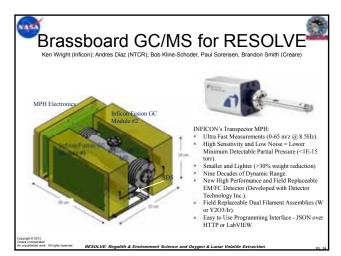


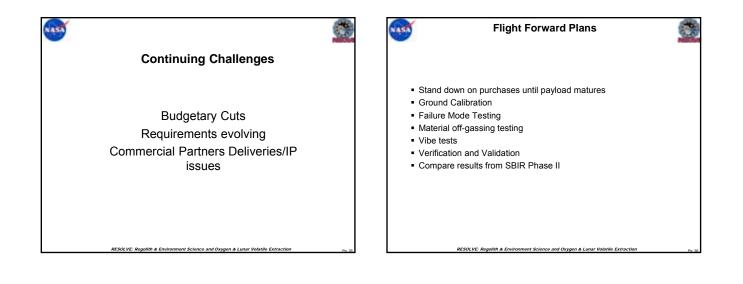

Performance Parameter	State of the Art	Threshold Values	R&TD Goals	Actual Values / Current Best Estimate
System Mass	15 kg	15 kg 🥝	11 kg	14.94 kg ETU (14.69 kg for flight) (MEL input, 5/1/13)
Average Power ¹	80 W	100 W	80 W 🥑	75 W checkout (PEL, 2/28/13)
Peak Power	163 W	200 W 📀	160 W	200 W (PEL, 2/28/13)
Water Vapor Concentration ²	N/A ³	0.5-95%	0.1-99%	0.1-99% (Test Data 6/3/2013)
Mass range (MS systems)	Ion trap 12- 150amu Mag Sector 2- 130amu Quad 1-60amu (1.8sec/mass scan) All Scanning	Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-65 AMU	Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-80 AMU	6.7 Hz, 1-70 AMU (Test data, 5/3/13)










Performance Parameter	State of the Art	Threshold Values	R&TD Goals	Actual Values / Current Best Estimat
System Mass	15 kg	15 kg 🥝	11 kg	14.94 kg ETU (14.69 kg for flight (MEL input, 5/1/13
Average Power ¹	80 W	100 W	80 W 🥑	75 W checkout (PEL, 2/28/13)
Peak Power	163 W	200 W 📀	160 W	200 W (PEL, 2/28/13)
Water Vapor Concentration ²	N/A ³	0.5-95%	0.1-99%	0.1–99% (Test Data 6/3/2013
Mass range (MS systems)	Ion trap 12- 150amu Mag Sector 2- 130amu Quad 1-60amu (1.8sec/mass scan) All Scanning	Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-65 AMU	Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-80 AMU	6.7 Hz, 1-70 AMU (Test data, 5/3/13)

Gen IIIA: Field Development Unit (FDU)		
 FDU System Requirements Review 	03/03/11	Completed
 FDU 30% Design Review 	05/25/11	Completed
 FDU 90% Design Review 	08/26/11	Completed
 FDU 90% Delta Design Review 	10/28/11	Completed
 Field Demo Subsystem HW Initial Delivery to KSC 	02/27/12	Completed
 Field Demo HW Integration onto Rover Complete 	06/29/12	Completed
 Field Demo HW Delivered to Field Test Location 	07/09/12	Completed
 Demonstrate Integrated RESOLVE ops on Rover in Field Test 		Completed
 AES Project Continuation Review 	09/18/12	Completed
Gen IIIB: Engineering Test Unit (ETU)		
 ETU SRD Initial Delivery 	12/16/11	Completed
 Complete ETU System Requirements Review 	08/29/12	Completed
 ETU 30% Design Review 	12/14/12	Completed
 ETU 90% Design Review 	07/26/13	Completed
 AES Project Continuation Review 	09/13	
 OCT Project Evaluation/Continuation Review 	09/13	
 ETU Subsystem Environment Testing Complete 	05/12/14	

