

A field-portable thermal desorption time-of-flight mass spectrometer

Dr Matthew Brookes Team Leader (Chemical Sensing) Defence Science and Technology Laboratory Fort Halstead Sevenoaks, Kent, UK

Overview

- TOF-MS for field applications
- Kore Technology MS200
 - direct vapour sampling dual membrane inlet TOF
 - performance
- Modifications for rapid detection of semi-VOCs
 - Trap-Evacuate-Desorb (TED)
 - novel thin membrane
 - high temperature valve
- Prototype system
 - performance
- Summary

TOF-MS for field applications

Advantages

- all masses sampled in parallel
- high duty cycle
 - sensitive
- capable of high resolution
- unlimited mass range
- simple
 - rugged

Disadvantages

- high vacuum required
 - more power required
- ionisation mechanisms restricted
 - less adaptable
- not capable of MS/MS
 - less selective

Kore MS200

- Field-portable membrane inlet **TOF-MS**
 - sealed system
 - ion/ getter pumps
 - no consumables
 - battery powered
 - weight ~ 20 kg
 - library matching of unknowns
 - low ppb sensitivity
 - relatively low cost \sim £30K
 - VOC detection

© Kore Technology 2005 used by permission

07 October 2005 © Dstl 2005

Converging annular reflectron TOF

- Annular 70 eV EI filament source
 - more ions created than in point source
 - retains focussing benefits of point source
- 10⁻⁷mbar operating pressure
 - 10⁻⁹ mbar base pressure
 - ion pump only requires low power
- Complete spectrum generated each analysis cycle
 - 50000 cycles per second
- High efficiency of analyser results in very high sensitivity

Membrane inlet

Membrane selectivity causes more of the analyte (red) to pass than the background (green).

The concentration of analyte compared to the background is increased, although total pressure is much lower.

- Rate of permeation depends on:
 - membrane material
 - chemical and physical properties of analyte
 - temperature
 - partial pressure of the analyte on the two sides of the membrane
- Results in much improved sensitivity

07 October 2005 © Dstl 2005

© Dstl 2005

Ministry of Defence

dstl 07 October 2005 © Dstl 2005

Mass spectrum- landfill site

 $[\]ensuremath{\mathbb{C}}$ Kore Technology 2005 used by permission

Requirements for semi-VOC analysis

- Pre-concentrate sample
- Higher temperature operation
 - inlet valve critical
- Increase speed of analysis cycle
 - thinner membrane
 - faster pump-down

Pre-concentration & sampling

• Utilise Tenax tube (2 L/min sampling)

- Tenax causes significant background
 - reduces selectivity and sensitivity
 - long sample release time
- Alternative pre-concentrator materials tested
 - polymer coated nickel foams
 - similar background problems
 - uncoated foams better (but lower capture efficiencies)
- Background subtraction important

Hand-held sampling unit

Single membrane with tenax trap

© Kore Technology 2005 used by permission

07 October 2005 © Dstl 2005

Desorb heater unit

 $\ensuremath{\mathbb{C}}$ Kore Technology 2005 used by permission

Retro-fit MS200 unit

- Bolt on desorber
 - incorporates Tenax tube holder

Additional heater controller

07 October 2005 © Dstl 2005

Thinner membrane

- Must be robust to withstand pressure differential
- Use mechanical support
- Maintain conductance and concentrating power
- Reduce equilibration time

thickness	ϕ	n
- 125	2mm	4
- 50	800µm	10
- 25	400µm	20
- 2.5	40µm	200

07 October 2005 © Dstl 2005

Response time – DMNB (ICAO taggant)

Response time – DMMP (CW simulant)

Analysis time

Analysis time significantly reduced

- incorporated new miniature scroll pump (Air Squared)
- pump down to < 0.1 mbar in < 5 sec (previously 1 min)

High temperature inlet valve

To enable higher temperature operation

- original valve has polymer tip (limited to 75 °C)
 - acts as sponge for analytes
 - deforms if baked under load
- Approach #1: Novel sapphire on copper sealed valve
 - lacked robustness
- Approach #2: Stainless steel on copper sealed valve
 - leak and robustness tested
 - retro-fitted to instrument

Prototype unit

Desorber

Detection limit improvement

© Kore Technology 2005 used by permission

Summary

• MS200 is a robust field-portable dual membrane inlet TOF-MS

- VOC detection and identification
- Significant instrument improvements
 - Trap-Evacuate-Desorb (TED) unit
 - thin membrane for fast response time
 - high temperature valve for heated inlet region
 - scroll pump for rapid sample pump-down
 - 2 orders of magnitude sensitivity improvement (sub-ppb)
- Increased range of detectable compounds
 - semi-VOC detection and identification
- Selectivity limits instrument capability for more complex mixtures
 - signal processing and rapid separation techniques under development
- Field trials underway

Acknowledgements

Dstl

- Dr Andrew Marr
- Kore Technology
 - Dr Steve Mullock
 - Dr Frank Nuber
 - Dr Fraser Reich
 - Clive Corlett C.Eng.

Questions

