Miniature Ion Traps and Arrays for High Pressure Mass Spectrometry

William B. Whitten, Jeremy Moxom, Guido F. Verbeck, Peter T. A. Reilly, ORNL
J. Michael Ramsey, UNC
Stanley Pau, U. Ariz./Bell Labs

HEMS Workshop 2005
Progress in Miniaturization of Ion Trap Mass Spectrometry

Commercial ITMS, 45 Kg, 1800W

Battery-powered prototype, 10Kg, 60W

MGA ITMS array, 40-μm traps
Commercial Ion Trap Electrodes
1-mm Cylindrical Ion Trap

End-cap

Insulator

1.0 mm

Insulator

End-cap

0.9 mm

0.45 mm
Timing sequence

- Ion trapping
- Mass scan
- Electron gun on
- Detector on
- Ion signal

-t (ms)-

- Voltage - rf amplitude (V)
Mass spectrum of perfluorophenanthrene
Mass Spectrum of Xenon isotopes, 1-mm Trap

\[\frac{\Omega}{2\pi} = 6.8 \text{ MHz} \quad f_{ax} = 1.7 \text{ MHz} \]
The equation of motion for an ion in a quadrupole trap is

$$\frac{d^2u}{dt^2} + c \frac{du}{dt} = \frac{\alpha e}{m(r_0^2 + 2z_0^2)} [V_{DC} + V_{AC} \cos(\Omega t)]u$$

where $\alpha = -2$ for $u = r$, $\alpha = 4$ for $u = z$ and we have added a drag term. The velocity-dependent term can be removed by changing to a new variable,

$$u = \exp\left(-\frac{c}{2}t\right)u'$$

To put the equation in the canonical form, we also change to a dimensionless time variable,

$$\xi = \frac{\Omega t}{2}$$
giving

\[
d^2 u' \frac{d^2}{d \xi^2} + \left[a' - 2q' \cos 2 \xi \right] u' = 0.
\]

where

\[
a' = \frac{4 \alpha e}{m \Omega^2 (r_0^2 + 2z_0^2)} V_{DC} - \frac{c^2}{\Omega^2} = a - \frac{c^2}{\Omega^2},
\]

\[
q' = \frac{2 \alpha e}{m \Omega^2 (r_0^2 + 2z_0^2)} V_{AC} = q,
\]

with \(\alpha = -4 \) for \(u = z \) and \(\alpha = 2 \) for \(u = r \).

This reverts to the usual Mathieu equation for zero pressure, \(c = 0 \).

The only result of adding drag to the equation is to shift the value of \(a \).
Stability diagram for zero pressure
Stability diagram for $c^2/\Omega^2 = 0.1$
How large is c?

c is given by $2/\tau$ for oscillatory motion. Plass et. al. ([*J. Phys. Chem. A*] 104, 5059-5065 (2000)) found $\tau = 4$ ms for m/z 84 at a pressure of 0.43 mTorr, giving $c = 500$ s$^{-1}$. c is linear in buffer gas pressure. At atmospheric pressure, c will be approximately 10^9 s$^{-1}$ for m/z 84.

c varies inversely with mass for heavy ions.

We can make Ω as large as we want as long as the stability requirements are met.

Although not included in the analysis, we need to maintain sufficient trap depth, given approximately by $D = q_z V_{AC}/8$, to preclude thermal detrapping.
There is an uncertainty relation between collision frequency and linewidth

\[\Delta \omega = \frac{2(3)^{1/2}}{\tau} \]

Goeringer et al. and Marshall et al. have shown that the linewidth resulting from collisional relaxation is given by \(\Delta \omega = 2(3)^{1/2}/\tau \). The mass resolution will then be,

\[\frac{m}{\Delta m} \leq \frac{\omega_0 \tau}{2(3)^{1/2}} = \frac{\omega_0}{((3)^{1/2}c)} \]

Since \(c \) is proportional to the pressure, the frequency \(\omega_0 \) must also increase with pressure to maintain the same resolution.
\[r_0 = 0.3 \times 10^{-7} \sqrt{mVq_z \Delta m} \frac{\Delta m}{P} \]

\[f = \frac{10.5 \times 10^{12} P}{q_z m \Delta m} \]

Graph: Trap Size and Frequency vs Pressure

- **Axes:**
 - X-axis: Pressure (Bar)
 - Y-axis 1: \(r_0 \) (cm)
 - Y-axis 2: Frequency (Hz)

- **Lines and Points:**
 - Blue line: ITD
 - Red line: ORNL 1-mm Trap
 - Green line: Diaphragm Pumps

- **Labels:**
 - Diaphragm
 - Pumps

Conditions:
- \(m = 100 \text{ amu} \)
- \(\Delta m = 1 \)
- \(V = 100V \)
- \(q_z = 0.4 \)
Array of 40-μm poly-Si ion traps fabricated at Bell Labs
Lucent has also fabricated a series of arrays of 250-mm diameter ion traps from micro circuit-board material. These arrays will be tested in both the ion drift experiment and the electron ionization experiment.
Mask for Fabrication

- Mask contains 33 chips to fit on 4-in Silicon wafer
- Each chip has 808 holes of the same diameter
 - 5 chips have 200-\(\mu\)m holes
 - 6 chips have 100-\(\mu\)m holes
 - 10 chips have 60-\(\mu\)m holes
 - 12 chips have 30-\(\mu\)m holes
A second generation array of 40-micrometer traps has fewer traps, lower capacitance. We can now detect trapped xenon ions at low pressure.

Ion signal (xenon) obtained with the array at left at low helium pressure (10^{-4} Torr) Origin at 4.090 ms.

Scan function - electron gun on, 0-4 ms
Detector on 4-5 ms
Micro Ion Trap, Ionization Source And Detector

- Filament
- Focusing Electrode
- Mounting Plate
- End Caps
- Ground Plate
- Ring Electrode
- Electron Multiplier
- pump
Dual-chamber system for high-pressure MS

- Ion trap
- Detector
- Gate valve
- Turbo pump
View of mounting flange, ion trap array
View of detector assembly
Experiments with a single 1-mm ion trap at high pressure, using a detector in vacuum

- Instrumentation:
 - RF frequency: 6.5 MHz
 - RF voltage: ~120-140 V 0-p
 - Scan rate: ~5 amu/ms ~600 Xe ions detected/scan

- Mass spectrum of xenon isotopes with helium pressure of 0.46 Torr in chamber.
- Sticks show major Xe isotopes.
- Mass peaks could be observed with chamber pressure as large as 1.7 Torr. Pressure within trap is somewhat lower.
Mass Spectrum of CW Surrogate, DMMP, in a single 1-mm Ion Trap with Chamber at 1.7 Torr

The stick spectrum shows the parent ion and fragment ions resulting from electron-impact ionization of DMMP, furnished by NIST. RF voltage from 80-130 V 0-p.
0.8 and 0.3-µm microfabricated devices from Lucent are being tested at low pressure. We have observed ions being formed when a voltage is applied between the two electrodes.

Soft ionization array, before cavity etch

Ion generation from 0.3 µm membrane
Summary

- Mass spectrometry with ion traps of submillimeter dimension is feasible
- Mass resolution is comparable to or better than from conventional ion traps
- They operate at lower voltages, higher frequency, and higher pressure
- Arrays of traps can store greater number of ions for higher sensitivity
- All components are amenable to microfabrication

Research sponsored by U.S. Department of Energy, National Nuclear Security Administration, Office of Nonproliferation Research and Engineering, Office of International Safeguards, and by DARPA