THE KNUDSEN COMPRESSOR AS AN ENERGY EFFICIENT MICRO-SCALE VACUUM PUMP

M. Young, E.P. Muntz, and G. Shiflett

University of Southern California Los Angeles, CA 90089-1191

Amanda Green

Jet Propulsion Laboratory

2nd NASA/JPL Miniature Pumps Workshop March 28 2002 Pasadena, CA

Overview

- •Knudsen Compressor Description
- •Advantages of Thermal Transpiration Pumps
- •Thermal Transpiration Pump History at USC
- •Transitional Flow Formulation and Results
- •Sample Stage Sizing and Performance
- •Special Considerations at the Low Pressure Limit

•Summary

Thermal Effusion and Creep

Rarefied gas phenomena (free-molecular flow driven by gas-surface interactions)

Net effect is a flow from cold to hot side of tube

Knudsen Compressor Stage Operation

Why Thermal Transpiration Pumps?

- No moving parts.
- No oil or working fluids.
- Recent availability of small pore membrane materials with very low thermal conductivities.
- Can operate on waste heat from other equipment.
- MEMS fabrication allows for batch fabrication of the many required stages.
- Can operate over a wide range of pressures.
 - Roughing pump from 10 mTorr 1 atm
 - High pressure gas source from 1 atm to 10 atm

Time-Line for Thermal Transpiration Pumps

• Reynolds -- first explained thermal transpiration

- Knudsen -- experimentally achieved pressure ratio of 10 with first multiple stage pump based on thermal transpiration.
- Pham-Van-Diep Analysis of MEMS based pump
- Vargo Demonstrated MEMS based vacuum pump stages
- MEMS Knudsen Pump Optimize and Construct Multistage MEMS vacuum pump suitable for application

Transitional Flow Formulation

Power Consumption Optimization Results

 $\Delta T = constant$

 $\Delta P = 10, L_r = 500 \mu m$

 $\alpha_1 = constant$

Kn low: capillary section is not very efficient Kn high: constant number of stages \rightarrow volume per unit number flux increases linearly

4.1

Kn_₽

6.0

8.0

5

10.0

 $L_{\rm R}/L_{\rm r}$ low: little difference between the capillary and connector sections

0.1

2.1

 L_R/L_r high: length of the connector is increasing linearly with $(L_R/L_r)_1 \rightarrow$ increase linearly

Kn low: inefficiency counteracted by increasing the temperature difference \rightarrow no large increase in the number of stages

6.0

8.0

5

10.0

4.1

Kn_₽

Kn high: same as $\Delta T = constant$

0.1

2.1

 $L_{\rm R}/L_{\rm r}$ low: same as ΔT = constant

 L_R/L_r high: length of the connector is increasing linearly with $(L_R/L_r)_1 \rightarrow$ increase linearly

Previous Experimental Design

•Silicon Aerogel as Transpiration Membrane (0.6mm thick)

•Silicon wafer with DRIE holes and thin film gold heater used to apply temperature gradient

•Pyrex connector sections

- Proof of concept for multiple stages
- Thermally efficient sealing identified as a major problem
- Transitional flow analysis validated
- Operation shown from atmospheric pressure down to several hundred Torr for several different working gases.

Previous Results: Validation of transitional flow model

•Model adequate for performance estimation using aerogel

•10x better flowrate than predicted using nominal pore size and membrane thickness

Low Pressure Cascade Sizing Using $L_r = 10nm$

Considerations to Optimize Design for Low Pressure Applications

Optimize Capillary Pore Diameter

•Kn ~ 1 is optimum in capillary pores, using aerogel pores \rightarrow Kn = 4.6E5

•By boring holes in the aerogel transpiration membrane the pore diameter can be optimally sized

Impose required temperature gradient

•At low connector Kn the gas is not uniformly hot at the hot side of the pores due to direct reflections from connector walls

•Add thermal adjustment material

Performance Using Optimized Pore Diameters

Modifications:

1.) Bore Optimized Holes in Aerogel Substrate

2.) Add Thermal Adjustment Material

Cascade	L _r (m)	L _x (m)	L _R (m)	L _X (m)
10-100 mTorr	2.5E-04	5.0E-04	5.0E-03	2.0E-02
100 mTorr - 1Torr	2.5E-05	5.0E-04	2.8E-03	2.0E-02
1Torr-10Torr	2.5E-06	5.0E-04	2.7E-03	2.0E-02
10Torr-760 Torr	1.0E-08	5.0E-04	1.3E-03	5.0E-03

Low Pressure Performance Comparison

•Performance Increases Due to New Design

Number of Stages	24	Number of Stages	33
Pressure Ratio	10 (10-100 mTorr)	Pressure Ratio	10 (10-100 mTorr)
Flow Rate	6E13 (#/s)	Flow Rate	3E16 (#/s)
Volume	33 cm ³	Volume	45 cm ³
Power Consumption	1.5 W	Power Consumption	1.1 W
Energy Efficiency	2.5E-14 W/(#/s)	Energy Efficiency	7.E-17 W/(#/s)
Volumetric Efficiency	5.5E-19 m ³ /(#/s)	Volumetric Efficiency	1.5E-21 m ³ /(#/s)

•increased pore diameter \rightarrow increased conductance

•increased conductance \rightarrow increased mass flow

•decreased λ , Kn \rightarrow decreased TMPD

•decreased pressure ratio \rightarrow increased number of stages

•Net Results: more stages and volume, less power and volume/ upflow

Performance of New Design

Cascade	Volume (cm ³)	Power (W)
10-100 mTorr	45.1	1.07
100mTorr-1Torr	13.0	0.297
1Torr-10Torr	11.8	0.268
10Torr-760Torr	5.26	0.92
Total	75.2	2.56

Power	8.5E-17	
Efficiency	W/(#/s)	
Volumetric	2.5E-21	
Efficiency	m³/(#/s)	

Status of Experimental Work

•One stage device constructed and testing is ready to begin

Conclusions

- •Optimum operation (based on thermal and volumetric efficiency) occurs at Capillary Kn ~ 1.
- •Pore sizes must be optimized for low pressure application.
- •Thermal adjustment material must be added at low pressures
- •10 mTorr identified as the lowest practical pressure attainable with a MEMS Knudsen Compressor.

This work is partially funded by NASA: award number NAG5-10399